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Abstract
Major advances in understanding regulated mucin secretion from
airway goblet cells have been made in the past decade in the areas of
pharmacology and basic cell biology. For instance, it is now appreci-
ated that nucleotide agonists acting locally through P2Y purinocep-
tors on apical membranes of surface goblet cells provide the major
regulatory system for mucin secretion. Similarly, Clara cells, the pri-
mary secretory cell in the mouse airways (and human small airways),
are now recognized as major mucin-secreting cells. In Clara cells,
the relative lack of staining for mucosubstances reflects essentially
equal baseline rates of mucin synthesis and secretion, with little to
no accumulation of mucin granules in storage pools. During mucous
metaplasia induced under inflammatory conditions, mucin synthesis
is massively upregulated in Clara cells, and stored mucin granules
come to dominate the secretory cell phenotype. More importantly,
we have seen a transition in the past few years from a pharmacological
focus on regulated mucin secretion to a more molecular mechanistic
focus that has great promise going forward. In part, these advances
are occurring through the use of well-differentiated primary human
bronchial epithelial cell cultures, but recent work in mouse models
perhaps has had the most important impact. Emerging data from
Munc13-2- and synaptotagmin 2–deficient mouse models represent
the first direct, molecular-level manipulations of proteins involved
in regulated secretory cell mucin secretion. These new data indi-
cate that Munc13-2 is responsible for regulating a baseline mucin
secretory pathway in the airways and is not essential for purinergic
agonist–induced mucin secretion. In contrast, synaptotagmin 2, a
fast Ca2+ sensor for the SNARE complex, is essential for regulated
secretion. Interestingly, these early results suggest that there are two
pathways for excocytic mucin release from goblet cells.
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Baseline: specifies
(a) steady-state
polymeric mucin
production in the
absence of cytokine
stimulation and
(b) steady-state
secretory activity

Regulated
secretion (or
pathway): exocytic
release of cargo from
vesicles or secretory
granules in response
to an increase in
Ca2+, generally
associated with
agonist stimulation
of the cell

INTRODUCTION

Mucin-secreting surface goblet cells are
widely distributed through the mammalian
alimentary, reproductive, and airway tracts,
where they function in hydrating, lubricating,
and clearing particulates and pathogens from
the underlying epithelium. Goblet cells in the
lung are the principal secretory cell in the
superficial, or surface, epithelium of the up-
per airways. In humans, this population would
generally be the cartilaginous airways, those
with diameters greater than approximately 3–
4 mm. The terminal bronchioles, with diame-
ters <∼2 mm, lack goblet cells under normal
conditions; their principal epithelial secretory
cell is the Clara cell. In the mouse, submu-
cosal glands are restricted to nasal cavity and
the first couple of tracheal rings, depending
upon the mouse strain. Surface goblet cells are
rare to absent; the Clara cell is the predom-
inant secretory cell throughout the tracheo-
bronchial tree. Goblet cells differentiate from
basal cells in pseudostratified airways epithe-
lium in humans, which extends to the termi-
nal bronchioles. In the mouse, pseudostrati-
fied epithelium extends from the nasal cavity
to the upper bronchus, but goblet cells, plenti-
ful in nasal septum and nasopharynx epithelia,
are rare to absent in the upper airways, again
depending on the strain. The developmen-
tal and morphological aspects of these cells
have been reviewed extensively in recent years
(e.g., References 1–3) and are considered only
briefly here. Also not considered in detail are
many aspects of the regulation of mucin secre-
tion and mucin biophysics, which pertinent
reviews in the recent past in this series (4–6)
and elsewhere (7–9) have discussed. In this re-
view, we treat recent work in mouse airways,
delineating the metaplastic transformation of
Clara cells to goblet-like cells as part of a
broader consideration of the mucin secretory
pathway. By focusing on the secretory path-
way, using information from nonmucin secre-
tory cells where necessary, we identify those
many areas requiring significant attention in
the future from mucin-oriented investigators.

MUCOUS METAPLASIA IN
SMALL AIRWAYS

Surprisingly, the surface epithelium of the in-
trapulmonary airways of mice and the distal
airways of humans shows few, or no, identi-
fiable goblet cells under baseline conditions,
although numerous AB/PAS+ goblet cells are
seen after allergic, fungal, or viral inflamma-
tory stimulation (10, 11). Recent work has es-
tablished that the polymeric mucin Muc5b
is produced at baseline by the resident api-
cal secretory cell of the airways, the Clara
cell, but is promptly secreted so that it does
not accumulate intracellularly (12, 13). With
inflammatory stimulation, abundant rough
endoplasmic reticulum (ER) appears in the
Clara cell cytoplasm, Muc5b production in-
creases modestly (2–5-fold), and Muc5ac pro-
duction increases dramatically (40–100-fold);
the combined production of these polymeric
mucins exceeds the rate of baseline mucin
secretion, so they accumulate intracellularly
(12, 14; see Figure 1). This accumulation
leads to AB/PAS+ histochemical staining and
the presence of large electron-lucent secre-
tory granules (SGs) characteristic of goblet
cells in a process termed mucous metaplasia.
These accumulated intracellular mucin secre-
tory granules (MSGs) can be rapidly secreted
in response to external stimuli (13, 15) in a
process of regulated exocytosis that is the pri-
mary subject of this review.

VESICLE TRAFFICKING ALONG
THE SECRETORY PATHWAY

Although intestinal goblet cells were impor-
tant to studies in the 1960s and 1970s defining
the Golgi apparatus as the site of protein O-
glycosylation (e.g., see Reference 16), there
has been little work since relevant to the traf-
ficking of mucins through the secretory path-
way. This is perhaps understandable, given the
size and complexity of mucins [see compan-
ion reviews by Hattrup & Gendler (16a) and
Thornton et al. (16b) in this volume], but it
is also unfortunate because, in secreting both
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Figure 1
Mucous metaplasia in the mouse airways: Clara cells transform phenotypically to Clara-goblet cells.
Under baseline conditions (left ), mouse bronchial epithelium shows little or no AB-PAS staining
(photomicrograph), and Clara cells show abundant mitochondria (Mito) and smooth endoplasmic
reticulum (sER) at the apical pole with small electron-dense secretory granules (SG) just below the
plasma membrane (electron micrographs). During inflammatory mucous metaplasia (right), the apical
cytoplasm of Clara cells fills with large mucin-containing SG that stain with AB-PAS (photomicrograph)
and are electron-lucent with dense cores (electron micrographs). Mitochondria are now seen interspersed
among the SG, and the ER is now mostly rough (rER). These changes are schematized in the cartoons at
top, with Clara cell SG shown in black, mucin SG in green, and mitochondria in blue. After Reference 10.
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Figure 2
Secretory pathway showing vesicle trafficking along its primary subdivisions. The subdivisions of the
secretory pathway are defined by the Rab proteins (numbered) that regulate the trafficking of the vesicles
and granules from compartment to compartment, in part by controlling the targeting of the vesicles and
granules. Major, major regulated secretory pathway; minor, minor regulated secretory pathway; SG,
secretory granule.

Rab: a family of
small (20–29 kDa)
monomeric GTPases
that ubiquitously
regulate secretory
and endosomal
vesicular traffic

Coat proteins: the
formation of
transport vesicles
often occurs with the
structural support
and adapter function
of an overlying
spherical lattice
formed by the
polymerization of
monomers of either
clathrin
(clathrin-coated
vesicles) or coatomer
(COPI and COPII
vesicles)

membrane-tethered and polymeric mucins,
goblet cells are likely to offer valuable lessons
on the mechanisms of directing large, heavily
glycosylated proteins into different subpaths.
The secretory pathway, as it has been defined
from work on other cells, is comprised of vesi-
cles carrying cargo from a donor compart-
ment to a target compartment, through the
sequential actions of multiple protein com-
plexes, under the regulation of Rab GTPases
(see References 17–19; Figure 2). Trans-
port vesicles form at the donor compartment
when soluble and membrane-associated cargo
macromolecules are concentrated at the site
of a nascent vesicle, generally through inter-
actions with cytoplasmic coat proteins. The
coat proteins, acting to bend the donor mem-
brane, also assist the process of vesicle bud-
ding. After pinching off as a fully formed
transport vesicle, the protein coat dissociates,

and the vesicle travels to a target compart-
ment, either by diffusion or by directed trans-
port along cytoskeletal elements. At the tar-
get membrane, the vesicle initially becomes
loosely tethered by large protein complexes,
then becomes firmly docked through initial
interactions of the SNARE proteins, and fi-
nally fuses when the SNARE proteins fully
coil to pull the membranes into contact with
one another for the fusion event (see below
and side bar on SNAREs). Examination of
the same step of traffic across species from
yeast to humans reveals the participation of
closely related orthologs, whereas comparison
of different trafficking steps within a single
species reveals the participation of more dis-
tantly related paralogs. Together, this struc-
tural conservation indicates the retention of a
fundamental mechanism throughout the evo-
lution of interorganellar traffic in eukaryotic
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organisms. Macromolecules such as mucins,
destined for exocytic membrane insertion or
secretion, undergo several rounds of inter-
compartmental vesicular trafficking begin-
ning with transport from the ER, where they
are synthesized; to the cis-Golgi, where they
undergo core glycosylation; then through
the Golgi, where they undergo further post-
translational processing and sorting; and fi-
nally from the trans-Golgi to the cell surface
(Figure 2).

The constitutive pathway is a conduit for
vesicles budding from the trans-Golgi net-
work that are destined for immediate release
by Ca2+-independent exocytic release (20,
21). (Note: Constitutive is often used in the
physiological literature to mean a baseline ac-
tivity, a meaning studiously avoided in this re-
view to prevent confusion.) Tethered mucins
likely utilize the constitutive pathway for ex-
ocytic insertion into the plasma membrane,
and they may be processed on occasion by re-
cycling endosomal trafficking, which also uti-
lizes a constitutive exocytic pathway.

Secretory Granule Biogenesis

Vesicles carrying the primary secretory prod-
uct of the cell also bud from the trans-Golgi
network, but little is known about the sort-
ing of polymeric mucins into nascent secre-
tory vesicles in the trans-Golgi network, the
budding of secretory vesicles, or SG matura-
tion in airway goblet cells. In other cell types,
macromolecules destined for regulated secre-
tion are aggregated in the trans-Golgi by a
variety of mechanisms, including specific in-
teractions with chaperones, segregation into
lipid domains, and precipitation (22). Budding
of secretory vesicles from the trans-Golgi net-
work is mediated either by a clathrin coat in
cooperation with membrane vesiculating and
scission proteins, including amphiphysin, en-
dophilin, and dynamin, or by the packaging of
bulky cargo molecules such as collagen fibrils
into elongated tubules protruding from the
trans-Golgi whose scission is induced by local
production of diacylglycerol (DAG) (23, 24).

SNAREs: THE CORE MACHINERY
OF MEMBRANE FUSION

SNARE proteins appear to function in every membrane fu-
sion event in eukaryotic cells. They comprise a superfamily
of 25 proteins in the yeast Saccharomyces cerevisiae and 54 pro-
teins in mammals that have conserved coiled-coil domains (α-
helical regions that intertwine with other α-helices to form
a rope-like structure). In membrane fusion, four SNARE
proteins come together in a core complex, most commonly
contributed by one SNARE protein anchored in the vesicle
membrane and three SNARE proteins in the target mem-
brane. The coiling of the SNAREs provides much of the en-
ergy and some of the specificity of vesicle traffic (143, 145,
149). The SNARE coiled-coil domain is 60–70 amino acids
in length, with a central charged amino acid and 7–8 stacked
hydrophobic heptad repeats on each side. The coiled-coil do-
mains align in a parallel orientation in the core complex, and
most SNARE proteins are anchored by a C-terminal trans-
membrane domain. The SNAREs were originally classified as
v-SNAREs (vesicle membrane SNAREs) or t-SNAREs (tar-
get membrane SNAREs). However, some SNAREs function
in multiple transport steps with different roles at each step.
Further structural and functional studies led to a reclassifi-
cation as Q- and R-SNAREs on the basis of whether glu-
tamine or arginine is the central charged amino acid, with t-
SNAREs generally being synonymous with Q-SNAREs and
v-SNAREs with R-SNAREs. Each core complex is comprised
of three Q-SNAREs and one R-SNARE. The Q-SNAREs
known as Syntaxins are the central components of core com-
plexes: their SNARE domains are structured when the pro-
teins occur in isolation, whereas the structures of the other
SNARE proteins become ordered only after interaction with
Syntaxins. Syntaxins contain three other coiled-coil domains
besides the SNARE domain, and these other domains form
an intramolecular four-helix bundle prior to interaction with
other SNAREs. In regulated exocytosis, the opening of the
closed Syntaxin structure to allow the formation of the core
complex is a critical event regulated by Munc13 and Munc18
proteins through activation by second messengers released in
response to extracellular signals.

We have observed amorphous electron-lucent
material, consistent with mucin, in tubules
budding from the trans-Golgi network of
airway goblet cells, suggesting that the lat-
ter mechanism is used for polymeric mucin
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Exocytic insertion:
the transfer of
membrane-tethered
mucins, or other
proteins, from the
membrane of a
vesicle to the plasma
membrane following
vesicle fusion

Vesicle traffic or
vesicular transport:
the process by which
membrane lipids and
proteins and lumenal
contents of
membrane-bound
organelles are
concentrated, are
formed into
transport vesicles,
and then travel to
and fuse with other
membrane-bound
organelles

Constitutive
secretion: exocytic
release of cargo from
vesicles immediately
following their
budding from the
trans-Golgi network
in a Ca2+-
independent manner

Exocytic release or
secretion: the
release of materials
from a secretory
granule lumen to the
outside of the cells
following granule
fusion with the
plasma membrane

DAG: diacylglycerol

export (A.H. Rossi & C.W. Davis, unpub-
lished observations). Post-Golgi secretory
vesicles fuse homotypically to form larger im-
mature SGs, which then mature and shrink via
the budding of clathrin-coated vesicles that
remove membrane proteins and lipids and lu-
menal proteins that are not destined for secre-
tion (22). Some of the vesicles budding from
immature SGs may also carry secretory cargo
for exocytic release via the minor regulated
pathway for secretion at baseline, in a Ca2+-
dependent fashion, under the tonic control of
an agonist (21, 25, 26).

Secretory Granule Transport

Mature secretory granules move from the
trans-Golgi region to the cell periphery along
microtubules. This movement has been best
studied in melanocytes, whose pigment gran-
ules are modified lysosomes, but it has also
been observed in exocrine, endocrine, and
hematopoietic cells, although not goblet cells
(23, 27, 28). Near the cell periphery, SGs tran-
sition from microtubules to actin filaments
through the actions of a tripartite complex of
a Rab27 GTPase, an atypical, or nonconven-
tional, myosin, and a granulophilin (27, 28).
Rab27a is found in high abundance in air-
way goblet cells (29), but ashen mice lacking
Rab27a have no defects in airway mucin secre-
tion (O. Williams & B.F. Dickey, unpublished
observations). Rab27b is also expressed in the
lungs (30), and its expression increases and
functionally compensates for the absence of
Rab27a in other tissues (31). In addition, Rab3
proteins share upstream and downstream in-
teractions with Rab27 proteins (27, 28), and
both Rab3b and Rab3d are expressed in air-
way secretory cells (10), with Rab3d local-
ized on MSGs (15). Thus, redundant or com-
pensatory Rab3/27 function may obscure the
roles of individual Rab proteins in granule
transport.

Class V atypical myosins are required for
polarized secretion in yeast, and myosin Va
transcripts are expressed in the lung (32), but
dilute mice lacking myosin Va have no defect

in airway mucin secretion (O. Williams & B.F.
Dickey, unpublished observations). Myosin
Vb and Vc transcripts are also expressed in
the lungs, and myosin Vc protein is expressed
in the lungs and in secretory epithelia of other
tissues at high levels, making it a good candi-
date to mediate airway MSG transport (32).

The granulophilin Slp2a colocalizes with
apical MSGs in gastric mucosa of mice and
physically interacts with Rab27 proteins (33).
Its disruption by homologous recombination
results in larger MSGs but a reduction in
granule number, impaired granule apposi-
tion to the apical plasma membrane, and
reduced baseline mucin secretion. Together,
these findings suggest abnormalities in gran-
ule maturation and transport. Slp2a is also ex-
pressed in the lung (33), but knockout mice
show no apparent defect in mucin secre-
tion (M.J. Tuvim & B.F. Dickey, unpublished
observations).

The net result of MSG synthesis, matura-
tion, and transport is the formation and main-
tenance of a stored pool of MSGs for secretion
as needed. The MSGs are released exocyti-
cally via the Ca2+-dependent major regulated
secretory pathway (21, 26, 34; see Figure 2),
following an acute presentation of agonist to
the goblet cell.

RECEPTOR ACTIVATION OF
MUCIN SECRETION

During the 1970s to 1980s, as the regula-
tion of submucosal gland secretions was be-
ing defined (see Reference 8), the regula-
tion of mucin secretion from goblet cells in
the superficial epithelium of the airways re-
mained largely unknown. It was not until
the discovery of purinergic receptors and the
recognition in the 1990s that nucleotides and
nucleosides had extracellular signaling activ-
ities in the airways that goblet cells were
demonstrated to be regulated at their apical
plasma membranes by ATP and UTP (35,
36). The P2Y purinoceptors are now recog-
nized as a major G protein–coupled receptor
(GPCR) family (37) involved in the paracrine
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or autocrine control of many physiological
functions in the body. In addition to mucin
secretion in the airways, ATP and UTP also
stimulate Cl− and fluid secretion (see Refer-
ences 38 and 39), ciliary activity (40), and, im-
portantly, mucociliary clearance (41). P2Y2-R
was cloned from the airways (42) and appears
to be the major purinoceptor regulating mu-
cociliary clearance in the airways, including
mucin release from goblet cells. ATP and
UTP, the primary P2Y2-R agonists, elicit
maximal secretion from goblet cells in all ver-
tebrate species examined (e.g., see References
9 and 43), including human (44, 45), the re-
ceptor mRNA has been identified in two gob-
let cell models (46, 47), and the tracheal mucin
secretory response to ATP is severely compro-
mised in the P2Y2-R-deficient mouse (48).

The only P2Y2-R agonist other than
ATP/UTP with consistent, positive mucin se-
cretory actions on goblet cells across species is
platelet-activating factor (e.g., Reference 49);
unfortunately, interest in this receptor system
in goblet cells has waned. Neutrophil elas-
tase reportedly has nonagonist effects in pro-
moting goblet cell metaplasia through diverse
pathways (see Reference 50) and in stimu-
lating mucin secretion (50, 51). Importantly,
the cellular messengers underlying the secre-
tagogue effects of elastase are unknown but
do not appear to be associated with classical
pathways (52).

Purinergic agonist effects stimulating
mucin secretion have also been observed for
goblet cell basolateral membrane exposures
(36, 53). However, neither the molecular
identity of the receptor(s) nor the associated
cellular messengers have been established.

Muscarinic Regulation of Goblet
Cell Mucin Secretion?

The submucosal glands are richly innervated
by parasympathetic, sympathetic, and nona-
drenergic, noncholinergic nervous (NANC)
systems (8, 54). These glands are densely
populated by M3 muscarinic receptors (see
Reference 55), and there is a variety of

Minor regulated
secretion (or
pathway): exocytic
release of cargo from
vesicles following
their budding from
immature secretory
granules by a
Ca2+-dependent
process; generally,
forms the baseline
secretory activity of
the cell, which may
be under the tonic
control of agonist

Atypical myosins:
members of the
myosin superfamily
other than skeletal
muscle myosin II,
typically having one
globular head instead
of two and involved
in a wide variety of
actin-based cellular
functions

Granulophilin: a
family of
synaptotagmin-like
(Slp and Slac) and
unrelated proteins
that interact with
Rab GTPases and
atypical myosins to
mediate actin-based
vesicular transport

ashen and dilute:
spontaneously
derived mutant
mouse strains that
are hypopigmented
owing to defects in
the transport of
melanosomes, the
secretory granules of
melanocytes, to the
cell periphery for
secretion and uptake
by keratinocytes

experimental evidence that acetylcholine
(ACh) stimulates a copious secretion of mu-
cus from glands onto the airway surface (e.g.,
Reference 56). The superficial epithelium, in
contrast, especially in the human airways, is
poorly innervated (see Reference 8), and there
is “little specific labeling” of muscarinic recep-
tors when probed with radiolabeled agonist
(57). Although the supply of parasympathetic
nerves to the superficial epithelium is sparse,
ACh may serve as a local mediator: For ex-
ample, there is evidence of ACh synthesis in,
and release via, an organic cation transporter
from nonneuronal cells, including airway ep-
ithelium (see Reference 58). Regardless of the
source, however, whether or not muscarinic
agonists stimulate mucin secretion from gob-
let cells in the superficial epithelium is a major
unanswered question.

In some situations it is clear that mus-
carinic agonists do stimulate mucin secretion.
For example, injection of methacholine in-
traperitoneally in the mouse (59) or expo-
sure of isolated ferret trachea to muscarinic
agonists (55, 60) results in the secretion of
measurable amounts of mucins, and/or in the
loss of mucin stores, from the airway epithe-
lium. In all such cases, however, mucin secre-
tion was detected from intact airway tissues
in vitro or laboratory mammals in vivo, leav-
ing open the possibilities of (a) the detected
mucins emanating from submucosal glands
and not from the superficial epithelium,
(b) indirect effects of other, secreted local me-
diators (e.g., ATP) acting on the superficial
epithelium, and/or (c) significant species dif-
ferences in muscarinic receptor localization
to goblet cells. Using primary cell cultures
or cell lines derived from superficial epithelia
or isolated epithelium of canine, rat, or hu-
man origin, our laboratory has not observed a
mucin secretory response to muscarinic stim-
ulation, even though the same preparations
respond robustly to purinergic agonist when
applied subsequently as an internal control
(C.W. Davis, unpublished observations). The
argument has been made that the M3 recep-
tors that would normally be present are labile
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Major regulated
secretion (or
pathway): the
exocytic release of
cargo from mature
secretory granules by
a Ca2+-dependent
process, generally for
acute release in
response to the
transient release of
agonist

NHBE: normal
human bronchial
epithelial (cell)

and may be lost from the cultured prepara-
tions (see Group Discussion section following
references in Reference 61). This possibility
seems remote, however, because primary cul-
tures of ovine ciliated cells respond robustly to
muscarinic agonists (42) whereas human cells
respond poorly or not at all (63; M. Salathe,
personal communication). On balance, the
data suggest that goblet cells in the superfi-
cial epithelium, at least of human airways, lack
significant expression of muscarinic receptors.
Given the apparent importance of muscarinic
signaling in asthma and chronic obstructive
pulmonary disease (COPD) (e.g., Reference
64), however, a carefully planned study of the
direct effects of muscarinic agonists on hu-
man ciliated and goblet cells of the superficial
epithelium would appear prudent.

Cellular Messengers in
Purinergic Signaling

P2Y2-R typically couples to phospholipase C
(PLC) (37), and the existing data are consis-
tent in suggesting inositol 1,4,5-trisphosphate
(IP3) and DAG as the major cellular mes-
sengers underlying regulated mucin secre-
tion. The PLC-specific inhibitor U73122
and loading cells with the calcium chelator
BAPTA inhibit agonist-stimulated secretion
(45, 65). In contrast, secretion is stimulated
by (a) the DAG mimic PMA, (b) increasing
intracellular Ca2+ with the ionophore ion-
omycin, (c) permeabilizing the cells into an
extracellular Ca2+ EGTA-based buffer with
Streptolysin-O, and (d ) applying IP3 to per-
meabilized cells (9, 44, 66–68). Recent data
show, additionally, that intracellular Ca2+ is
mobilized in agonist-stimulated human gob-
let cells with a classic peak-and-plateau wave-
form and that this mobilization is inhibited by
U73122 or by BAPTA loading (68).

Classically, mucin secretion has been con-
sidered to be under the control of GPCRs,
which couple to PLC-β to initiate a cel-
lular messenger cascade. Mucin hypersecre-
tion is characteristic of inflammatory envi-
ronments in many airways diseases, however,

which raises the possibility of alternative sig-
naling mechanisms. We used the tyrosine
phosphatase inhibitor pervanadate to increase
the level of tyrosine phosphorylation in gob-
let cells and found that mucin secretion was
stimulated to levels similar to those of puriner-
gic agonist exposures. Significantly, U73122
reversed the effects of pervanadate, suggest-
ing that PLC-γ also mediates the effects of
inflammatory mediators in goblet cells (65).
Likely, PLC mediates the effects of pervana-
date (69); however, given that PLC is a family
of genes subdivided into at least 13 isoforms
in 6 subfamilies, the participation of other iso-
forms cannot be ruled out (70). Nonetheless,
that PLC should play such a central role in
regulated mucin secretion is interesting in po-
tentially simplifying the scheme of control:
Multiple inputs (purinergic agonists and in-
flammatory mediators) converge via PLC to
generate just two cellular messengers, DAG
and Ca2+, that then lead to exocytic mucin
release by common regulatory pathways.

DAG typically activates conventional and
novel PKC isoforms, and airway goblet cells
express cPKCα, nPKCδ, nPKCε, and nPKCη

(51, 71). Originally, we reported that nPKCδ

appeared to be the isoform mediating the ef-
fects of agonist to stimulate mucin secretion
from SPOC1 cells, because this was the only
isoform to translocate to the membrane frac-
tion in an agonist-concentration-dependent
manner (71). nPKCδ was also implicated in
mediating the effects of neutrophil elastase
on NHBE (normal human bronchial epithe-
lial) cells (51). The use of retroviral infec-
tion vectors with SPOC1 cells, however, indi-
cated that overexpression of cPKCα, nPKCδ,
and nPKCη was without effect, whereas over-
expression of nPKCε caused an increase in
agonist-induced mucin secretion. Addition-
ally, in perfused mouse tracheas the mucin se-
cretory response to agonist was blunted in the
nPKCε-deficient mouse, but not the nPKCδ-
deficient mouse (48). Hence, nPKCε appears
to be the isoform mediating agonist effects in
goblet cells. That it does so without a classic
cytosol-to-membrane translocation suggests
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a local activation within the membrane frac-
tion, which may be facilitated by the unique
actin filament–binding motif found in nPKCε

(see Reference 48).
It is important to recognize, however, that

DAG signaling is not simple. DAG has mul-
tiple synthetic sources and metabolic fates,
many of which have other signaling activities,
and it has targets other than PKC. DAG is
synthesized from phosphotidylinositol lipids
by PLC and from phosphatidylcholine by the
sequential actions of phospholipase D (PLD)
and phosphatidate phosphohydrolase, and it
can be phosphorylated by DAG kinase to pro-
duce phosphatidic acid or converted to arachi-
donic acid by DAG lipase. DAG and PMA
attract proteins to the plasma membrane by
binding to C1 domains. These domains were
defined originally for PKC but are now rec-
ognized to be incorporated into many pro-
teins, including some, such as DAG kinase and
Munc13, that have known actions in secretory
cells (72, 73). Interestingly, PMA has PKC-
independent effects in regulated mucin secre-
tion, and its major stimulatory activities are
elicited at concentrations of 300–1000 nM,
well above the 10–30 nM necessary to acti-
vate PKC fully (44, 66, 67, 71). Because these
other C1 domain proteins lie downstream of
PKC in their actions to regulate mucin secre-
tion, they are covered in more detail in the
sections below.

REGULATED MUCIN
SECRETORY GRANULE
EXOCYTOSIS

Direct observation of goblet cell MSG exo-
cytosis showed that there is a lag of several
seconds (5–15 s) between the application of
agonist and the first exocytotic event (36), sug-
gesting that a ready releasable pool of SGs,
as described for neuronal synapses and exci-
tatory secretory cells (e.g., Reference 74), is
lacking or is very small in goblet cells. Appar-
ently, after agonist stimulation those MSGs
destined for secretion transit from the stor-
age pool to the apical plasma membrane for

Priming: an activity
inferred from the
lower number of
synaptic vesicles
competent for
calcium-dependent
release than are
docked
morphologically, and
the submillisecond
kinetics of release
ruling out multiple
biochemical steps

exocytic release in a series of steps that can be
broken down categorically as actin filament
disruption and remodeling, MSG position-
ing, tethering/docking, priming, and exocy-
tosis (Figure 3).

REGULATION OF THE
CORTICAL ACTIN
CYTOSKELETON

Actin Filament Disruption

The cortical actin cytoskeleton is well known
for its scaffolding functions, serving to an-
chor and regulate membrane proteins in-
volved in many cell signaling events. It also
serves the simple task of separating cytoplas-
mic organelles from the plasma membrane
and the more complex task of regulating vesi-
cle trafficking to and from the plasma mem-
brane. In goblet cells, for example, β-actin and
γ-actin filaments form a cortical mesh imme-
diately beneath the apical membrane, appear-
ing as a cap over large stores of MSGs (75); the
MSGs must transit through this mesh to gain
access to the plasma membrane. The actin cy-
toskeleton is often called a barrier because of
its general appearance, because it is often vis-
ibly disrupted during secretion, and because
experimental disruption frequently acceler-
ates the rate of exocytic (76) and endocytotic
(77) events. The apical actin barrier in SPOC1
cells is disrupted fully during agonist-induced
mucin secretion. Furthermore, experimental
manipulations to disrupt the barrier with
latrunculin accelerate mucin secretion un-
der baseline and agonist-stimulated condi-
tions, whereas mucin secretion is inhibited
by either stabilizing actin filaments with
jasplakinolide or supplementing the barrier
through the overexpression of β- or γ-actin
(75).

In other secretory cells, however, disrup-
tion of the actin barrier with cytochalasin or
latrunculin has no effect, exocytosis is inhib-
ited, or the effect is complex, with stimula-
tory effects at low doses but inhibitory effects
at high doses (see Reference 76). In primary
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Figure 3
Primary events of regulated mucin granule exocytosis. The mucin secretory granules (SGs) are arrayed
along a timeline corepresenting the plasma membrane and are depicted at different stages of the exocytic
process. From left to right: Following receptor activation, the mucin SGs transit through the actin
cytoskeleton; dock with exocytic sites on the plasma membrane; are primed through assembly of the
SNARE complex; and, following an appropriate Ca2+ signal, are then exocytosed through fusion of the
granule and plasma membranes.

cultures of NHBE cells, in contrast to SPOC1
cells, latrunculin-A or cytochalasin D, applied
separately or in combination, has no effect on
mucin secretion over a wide range of concen-
trations (L.H. Abdullah & C.W. Davis, un-
published results). Hence, even though the
mobility of SGs relative to the plasma mem-
brane is two orders of magnitude less than it is
in other directions within the near-membrane
environment (78), the concept of an actin bar-
rier to exocytosis is insufficient to explain the
role of actin filaments in regulating exocytic
mucin release. Rather, the cortical actin ma-
trix is dynamically disrupted and remodeled
in such a way as to propel granules to the
plasma membrane and to regulate the traffic
(78–80).

Remodeling of Actin and Positioning
of Secretory Granules

Experiments tracking the movements of in-
dividual SGs in the near-membrane envi-
ronment of chromaffin and PC12 cells have
shown that directed movement to the mem-
brane increases following cell stimulation and
slows or ceases when actin filaments are dis-
rupted by latrunculin or disassembled by
ATP depletion (78–82). These movements
are generally attributed to a conventional
and an unconventional myosin, myosins II
and V, respectively (83), although whether
these myosins propel separate populations of
granules along actin filaments or act coop-
eratively on the same granule population is
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unresolved. For example, mysosin II has been
reported to associate with granules (84, 85);
however, other reports suggest that myosin V,
but not myosin II, does so (86). In addition to
myosin II, a plethora of studies have demon-
strated myosin light-chain kinase (MLCK) in-
volvement in exocytic secretion of amylase,
gonadotropin-releasing hormone (GnRH),
insulin, tear proteins, and epinephrine (85,
87–90). In goblet cells, inhibition of mucin se-
cretion by wortmannin, but not LY-294002, is
consistent with MLCK participation in mucin
secretion (65) and suggests the involvement
of myosin II. The participation of myosin V
in regulated secretion has been known for
some time (e.g., see Reference 83); however,
the association of myosin V with Rab27a in
the genetic diseases Griscelli syndrome and
hemophagocytic syndrome was key to the re-
alization that Rab27 couples vesicles/granules
to myosin V (91, 92). This relationship is
presently understood to be widespread in se-
cretory cells (see above). Other than the re-
port of wortmannin effects on mucin secre-
tion cited above, there have been no studies
of MSG trafficking related to secretion.

In addition to actin disruption and acto-
myosin involvement, actin filaments are dy-
namically remodeled by polymerization dur-
ing exocytosis (76). In part, this phenomenon
was elucidated initially from the findings that
actin filament polymerization is activated dur-
ing mast cell secretion, under the control of
Rho and Rac (93), and that pancreatic acinar
zymogen granules are coated with actin dur-
ing exocytosis (94). Recent studies in PC12
and chromaffin cells have shown that Cdc42
triggers filament polymerization and is essen-
tial for secretion (95, 96) and that N-WASP
and Arp2/3 mediate actin nucleation on SGs
(95, 97, 98). The principal function of this SG-
associated actin filament polymerization is not
fully understood, and it may differ by cell type.
In different cells, such polymerization may
be essential for the alignment of granules to
docking sites, the regulation of fusion pore
kinetics (99), the compression of granules af-
ter fusion to drive the expulsion of secretory

MARCKS:
myristolated,
alanine-rich
C-kinase substrate

cargo (100), or the stabilization of fused gran-
ules undergoing compound exocytosis (101).

Regulation of Actin Disruption
and Remodeling by Scinderin
and MARCKS

To allow the passage of micrometer-sized
SGs, the cortical maze is disrupted by
the actions of scinderin, a Ca2+-activated,
actin filament–severing and –capping enzyme
closely related to gelsolin that is enriched
in many secretory tissues, e.g., the adrenal
cortex (102–104). Like many secretory tis-
sues, airway goblet cells express scinderin,
but not gelsolin (75), and in mouse airways
scinderin is upregulated significantly dur-
ing IL-13-mediated mucous metaplasia (14)
as Clara cells are transformed to mucin-
secreting “goblet” cells (10, 12). Inhibition
or knockdown of scinderin in all secretory
cells examined, including goblet cells (75), re-
sults in the inhibition of exocytic activity (103,
105).

Scinderin, like other members of the gel-
solin family, is a complicated enzyme whose
functionality is not fully understood. It sev-
ers actin filaments when Ca2+ levels are el-
evated, and it caps and nucleates filament +
ends when Ca2+ is low. Additionally, scinderin
activity is also modulated by the inhibitory
actions of phosphatidylinositol bisphosphate
(PIP2), which may be effected by membrane
sequestration (76, 103, 106, 107).

MARCKS (myristolated, alanine-rich C-
kinase substrate) is a novel protein, well estab-
lished as participating in the regulation of the
cortical actin cytoskeleton; however, its exact
mode of action in this regulation is highly
controversial. Significantly, Adler and asso-
ciates have shown that a myristolated syn-
thetic peptide derived from the N-terminal
sequence of MARCKS is a potent inhibitor of
mucin secretion in the airways (59, 108, 109).
MARCKS is a randomly coiled protein whose
properties are dominated by its effector or
phosphorylation site domain (PSD), a region
of 25 residues containing 13 basic residues,
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6 hydrophobic residues, and 4 serine residues
(3 of these serine residues are phosphory-
lated by PKC) (110, 111). Under control con-
ditions, the PSD is unphosphorylated, and
MARCKS associates with the plasma mem-
brane via its myristolated N terminus and the
PSD. Following phosphorylation, the partial
charge neutralization of the PSD is sufficient
to release MARCKS from the plasma mem-
brane to translocate to the cytosol (see Ref-
erence 111). Consistent with this behavior,
MARCKS in goblet cells translocates to the
cytosol following agonist activation (75, 108).

nPKCε effects MARCKS phosphoryla-
tion in many secretory cells. Overexpression
of nPKCε in GH4 cells leads to increased
phosphorylation of MARCKS as well as in-
creased TRH secretion (112). In contrast, ex-
pression of dominant negative nPKCε con-
structions or nPKCε knockdown with RNAi
reduces MARCKS phosphorylation and se-
cretion in chromaffin cells (113) and lacrimal
gland acinar cells (114). Notably, nPKCε ap-
pears to be the isoform active in agonist-
induced goblet cell mucin secretion (48), con-
sistent with its participation in the regulation
of MARCKS activity and secretion in these
other secretory cells.

The molecular mechanism of MARCKS
actions in exocytosis is controversial. One
school of thought holds that MARCKS regu-
lates cortical actin cytoskeletion directly: Un-
phosphorylated MARCKS is postulated to
bind actin filaments through its highly pos-
itively charged PSD, thereby tethering fila-
ments to the plasma membrane (115–118).
A second school holds that MARCKS effects
are indirect, that the unphosphorylated PSD
sequesters PIP2 (119–122), which in a rest-
ing cell would have the effect of minimizing
actin turnover (106). When PKC phosphory-
lates the MARCKS PSD, MARCKS translo-
cates to the cytosol, which, depending on the
school of thought, either disrupts actin fila-
ments by destroying their plasma membrane
attachment sites (104) or frees PIP2 to ac-
tivate actin filament remodeling and poly-
merization (106). Recently, phosphorylated

MARCKS has also been proposed to bind to
goblet cell MSGs in the cytosol, secondary
to its translocation, to provide actin filament
attachment sites for transport to the plasma
membrane (108). MARCKS appears to have
broad functions in cell and developmental bi-
ology, none of which have been well defined
(111, 122). That a MARCKS-deficient mouse
is perinatally lethal, owing to defects in clo-
sure of the neural tube (123), underscores both
the importance of this protein in the body and
our need to understand the molecular mecha-
nism by which it affects and regulates the actin
cytoskeleton.

TETHERING AND DOCKING

After transport to the vicinity of a target
membrane, trafficking secretory vesicles and
granules bind to and interact with the mem-
brane in sequential steps (Figure 4). These
include relatively loose initial binding, often
termed tethering, that is initiated by activated
Rab GTPases anchored on the vesicle sur-
face. Rab3/27 proteins may provide a link be-
tween actin-mediated peripheral transport of
MSGs and their tethering to the plasma mem-
brane in goblet cells, similar to the role of
their homolog Sec4 in yeast (124). Tethering
is mediated by at least two classes of proteins:
(a) large, elongated coiled-coil proteins such
as EEA1, which acts in endosome fusion, or
p115 and GM130/GRASP-65, which interact
in ER-to-Golgi traffic, and (b) multisubunit
protein complexes such as TRAPP, which act
in intra-Golgi traffic, or the exocyst, which
acts in constitutive exocytosis (124). Subse-
quent interactions lead to the initial forma-
tion of the core complex, which is a tight form
of binding that draws the membranes into
close apposition and is often called docking.
Investigators have used the terms tethering
and docking variously for distinct biochemi-
cal, genetic, and morphological phenomena at
diverse steps of vesicle traffic, so their mean-
ings can be ambiguous. In any case, the pro-
teins and activities involved in tethering and

498 Davis · Dickey

A
nn

u.
 R

ev
. P

hy
si

ol
. 2

00
8.

70
:4

87
-5

12
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

N
or

th
 C

ar
ol

in
a 

- 
C

ha
pe

l H
ill

 o
n 

01
/2

5/
11

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV336-PH70-21 ARI 12 January 2008 10:4

Rab3
Rab3 effector

Munc13
Munc18

Syntaxin

SNAP-25

Synaptotagmin

VAMP

a b

Figure 4
Proteins effecting and regulating exocytosis. (a) Munc13, after interacting with a Rab3 effector or Rab27
directly, displaces Munc18 from its syntaxin binding site, thereby enabling SNARE assembly, a step that
constitutes priming and readies the complex for the exocytic event. (b) Following activation of
synaptotagmin by a local elevation of Ca2+, exocytosis is activated.

docking MSGs and other nonneuronal SGs
are not well studied.

In contrast, the octameric protein com-
plex that mediates the tethering of consti-
tutive SGs, the exocyst, is well studied in
yeast, revealing many of the molecular de-
tails of tethering and associated interactions
(124). In neurons, scaffolding proteins, in-
cluding RIM, Bassoon, Piccolo, and CASK,
hold synaptic vesicles in close proximity to
the presynaptic membrane (125), but whether
these proteins or paralogs function in non-
neuronal regulated secretion is not known.
The cochaperones cysteine string protein and
Hsc70 have been found on airway MSGs and
are suggested to interact with MARCKS pro-
tein (126), but whether they also interact with
tethering/docking proteins in goblet cells has
not yet been studied. Noc2 is another candi-
date docking protein in goblet cells because
of its expression in the lung and SPOC1 cells
and its widespread roles in regulated secretion
in endocrine and exocrine cells, although no
abnormalities were found in the morphology
of goblet cells of the gastrointestinal tract in
knockout mice (71, 127, 128).

PRIMING

In parallel with tethering and docking, a crit-
ical interaction occurs at all steps of vesicle

Cysteine string
protein: a
cochaperone with
Hsc70 that is
anchored to synaptic
vesicles by
palmitoylation and is
thought to function
in recruiting other
components of the
exocytic machinery.
Nonneuronal
isoforms have also
been identified

traffic between an SM (Sec1/Munc18) pro-
tein and the SNARE machinery to initiate
formation of the core complex (129, 130;
Figure 4). In many steps of traffic, compo-
nents of tethering complexes promote this
interaction directly (124). In regulated exo-
cytosis, however, there is an intermediate re-
quirement for the activation of the regulatory
protein Munc13 in a process termed priming.
At most steps of vesicle traffic, the SM pro-
tein binds only to the open conformation of its
cognate syntaxin, alone and in complex with
its SNARE partners. In regulated exocytosis,
however, the SM protein first binds the closed
conformation of syntaxin, preventing interac-
tion of syntaxin with other SNAREs until a
Munc13 protein opens the Syntaxin confor-
mation and allows core complex assembly to
proceed (131–133). This provides a key point
of control of regulated secretion by the sec-
ond messengers DAG and Ca2+ (see sections
above and below).

In neurons, Munc13-1 is found at baseline
mostly in cytoplasmic and cytoskeletal pools.
Upon activation by DAG, it translocates to
the plasma membrane to form a tripartite
complex with Rab3a on tethered vesicles and
RIM on the plasma membrane. Airway gob-
let cells express ubMunc13-2 (13, 71), which
is closely related to Munc13-1 in overall
structure and 78% identical in amino acid
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sequence, so it likely functions similarly. Air-
way goblet cells express Rab3b and Rab3d
rather than Rab3a (10), but expression of RIM
proteins has not been analyzed, so the precise
molecular details of these interactions in gob-
let cells remain unknown. Nonetheless, air-
way goblet cells of mice lacking Munc13-2
(134) have been analyzed and show striking
phenotypes in baseline and stimulated mucin
secretion (13). In contrast to wild-type mice,
which have few or no goblet cells in intra-
pulmonary airways at baseline, the mutant
mice show intracellular accumulation of poly-
meric mucins in the absence of inflamma-
tion. This finding demonstrated for the first
time that the secretory (Clara) cells in the in-
trapulmonary airways of mice produce poly-
meric mucins at baseline, despite the paucity
of morphological evidence, and implicated a
secretory pathway regulated by Munc13-2 in
their baseline export. These data further sug-
gested that the rate of export fully matches the
rate of mucin production at baseline in wild-
type mice, such that polymeric mucins do
not accumulate intracellularly and that base-
line mucin release occurs through tonic ac-
tivity of a regulated secretory pathway. When
stimulated with extracellular ATP, the mucin-
containing secretory cells of Munc13-2 mu-
tant mice show partial release of the intra-
cellular mucin, indicating a secretory defect
even in the presence of a strong stimulus.
When polymeric mucin production is induced
by allergic inflammation and secretion is then
stimulated with extracellular ATP, mucin re-
lease is approximately half that of wild-type
mice. Munc13-2 null mice also show accumu-
lation of intracellular mucin in goblet cells of
salivary glands, nasal mucosa, and intestine,
suggesting that Munc13-2 has a conserved
function in the regulation of mucin secretion
in diverse tissues (13).

A good candidate for the residual priming
function in airway goblet cells of Munc13-2
null mice is Munc13-4. This distantly related
member of the Munc13 family, with only 24–
26% sequence identity to the other isoforms,
is strongly expressed in lungs, and the protein

has been localized to airway goblet cells (71,
135). A conditional mutant mouse has been
generated, although its phenotype in the air-
way has not yet been described (B.F. Dickey,
unpublished observations). In hematopoietic
cells, Munc13-4 can be localized to SGs by
activated Rab27, and its deficiency results in
defects in stimulated secretion from platelets
and cytolytic T cells (136). The capacity of
Rab27 proteins to interact both with granu-
lophilin/myosin V and with Munc13-4 sug-
gests sequential interactions leading directly
from granule transport to exocytic priming.
Whether Munc13-2 and Munc13-4 function
on the same granule in response to different
signals or regulate distinct SG populations is
currently unknown, although the observation
that secretory cells in the Munc13-2-deficient
mouse possess a population of MSGs resistant
to agonist stimulation suggests the latter pos-
sibility.

EXOCYTOSIS

Despite the role of the exocytic core com-
plex of airway goblet cells as the essential fu-
sion machinery of vesicle traffic, the molecu-
lar composition of this complex is not known.
Some clues are given by the specificity of
interactions with SM proteins because these
have been studied in polarized epithelia, in-
cluding the airway (Figure 4). The three
Munc18 proteins comprise a subset of SM
proteins that appear to be specialized for se-
cretion (129, 130, 137). Munc18a is expressed
primarily in neurons, where it is required for
synaptic vesicle release (138); Munc18b is ex-
pressed in secretory epithelia of the lungs,
kidney, and other tissues and regulates apical
traffic in polarized epithelial cell lines (139,
140); and Munc18c is expressed ubiquitously
and appears to mediate basolateral secretion
(137). We have found that Munc18b is local-
ized to the apical membrane of murine air-
way secretory cells, that it regulates mucin
secretion, and that in adenocarcinoma cell
lines it coimmunoprecipiates with Syntaxins 2
and 3 (B.L. Scott & B.F. Dickey, unpublished
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observations). Therefore, Syntaxins 2 and 3
are candidate Qa-SNAREs in MSG exocyto-
sis, consistent with the localization of these
Syntaxins on the apical plasma membrane
of other polarized epithelial cells (141 and
references therein). Another candidate Qa-
SNARE is Syntaxin 11, which phenocopies
Munc13-4 in hematopoietic cells when mu-
tated (142). The Qb- and Qc-SNAREs in
yeast exocytosis are provided by a single pro-
tein (Sec9), in distinction from all other steps
of vesicle traffic in yeast (143–145). Similarly,
Qb- and Qc-SNAREs are provided by a single
protein of the orthologous SNAP-25 family in
all known examples of metazoan-regulated se-
cretion. Thus, it is likely that a member of the
SNAP-25 family plays this role in airway gob-
let cells, although expression, localization, and
functional studies have not yet been reported.
VAMP-8 functions broadly in exocrine secre-
tion (146, 147) and is therefore a candidate
R-SNARE in airway goblet cells.

In neurons, the primed and partially coiled
core complex is prevented from full coiling
by complexin, which is displaced by a synap-
totagmin (Syt) in response to depolarization-
induced calcium entry (148). This is thought
to be the final event in synaptic vesicle fusion
and results in vesicle content release with sub-
millisecond kinetics (143, 149). Complexins
have not been studied in airway goblet cells,
but the kinetics of MSG exocytosis, at least as
they are observed by microscopy and transep-
ithelial capacitance measurements, are slower
by several orders of magnitude (36, 53). In ad-
dition, the large size of MSGs precludes the
close apposition of more than a small fraction
of granules to the plasma membrane at one
time. Together, these facts suggest that for-
mation of the core complex is not initiated in
advance of secretory signaling but that gran-
ule priming and fusion occur acutely in re-
sponse to the second messengers DAG and
Ca2+. Despite these differences, a low-affinity,
fast calcium-sensing Syt is required for air-
way mucin secretion as it is in neurons (15).
Syt-2 null mice were generated by knocking
the β-galactosidase gene into the Syt-2 locus,

MUNC PROTEINS: CRITICAL REGULATORS
OF EXOCYTOSIS

Sydney Brenner originally identified the unc genes in a
chemical mutagenesis screen in Caenorhabditis elegans for
uncoordinated mutants in 1974, and many of these genes were
found to encode proteins that mediate synaptic vesicle release.
The mammalian orthologs of unc13 and unc18 were not sep-
arately discovered and given other names as had occurred for
most other orthologs, so they came to be known as Munc
proteins.

Munc13 comprises a family of five proteins derived from
four genes. Munc13-2 is expressed in two splice variants: a
ubiquitous isoform that is expressed widely outside the ner-
vous system (ubMun13-2) and a brain isoform whose expres-
sion is mostly confined to neurons (bMunc13-2). All Munc13
proteins except Munc13-4 contain a C1 domain that binds
diacylglycerol (DAG); this site is the major target of phor-
bol esters in pharmacologically stimulated secretion (157).
All Munc13 proteins contain multiple C2 domains, some that
bind calcium and phospholipids and others that are special-
ized for protein-protein interactions (158). The MUN domain
is an α-helical region that interacts with Syntaxin either di-
rectly or indirectly, and this interaction is essential for Munc13
function (159).

Munc18 is a family of three proteins that is a subset of the
larger family of seven vertebrate SM (Sec1/Munc18) proteins.
Sec1 was the first of a series of genes encoding proteins that
mediate secretion and were identified in a chemical mutage-
nesis screen in yeast by Peter Novick and Randy Schekman
in 1980. Sec1, which functions in ER-to-Golgi traffic, was
later recognized as being distantly related to Munc18, which
functions in regulated exocytosis, but the proteins were found
to function in fundamentally different ways. Therefore, the
term SM proteins was adopted to include all members of the
evolutionarily related family, with four members in yeast and
seven in mammals. An SM protein functions at every step of
vesicle traffic, so some SM proteins function at more than one
step. Loss of SM protein function causes a profound defect in
the corresponding trafficking event (129, 130, 137). All SM
proteins interact with Syntaxins, but the critical function they
perform and whether it exclusively reflects their interactions
with Syntaxins are unknown.
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SNAP-25
(synaptosome-
associated protein
of 25 kDa): a
Q-SNARE (see side
bar on SNAREs)
containing two
coiled-coil domains.
SNAP-23 and
SNAP-27 are closely
related nonneuronal
family members, and
like SNAP-25, also
contribute two
coiled-coil domains
to their cognate
exocytic core
complexes

Complexins: a
family of four soluble
13-kDa proteins with
coiled-coil structures
that are capable of
associating with
partially formed
exocytic SNARE
complexes and
preventing complete
coiling

Synaptotagmin
(Syt): sometimes
called tagmin; a
family of at least 13
genes in vertebrates
that serve as calcium
sensors in vesicle
traffic and are
composed of a short
intravesicular N
terminus, single
membrane-spanning
domain, and two
homologous C2
domains

allowing the expression of Syt-2 to be ana-
lyzed by lacZ staining (150). This revealed
that Syt-2 is expressed in airway secretory
cells of mice as well as in neurons of caudal
brain regions. Syt-2 null mice with IL-13-
induced mucous metaplasia display a severe
defect in ATP-induced mucin. However, un-
like Munc13-2 null mice, which accumu-
late intracellular mucin in the absence of
inflammation-induced mucin gene upregula-
tion, Syt-2 null mice do not accumulate intra-
cellular mucin at baseline. This is consistent
with the increase in spontaneous neurotrans-
mitter release and the lack of change in total
neurotransmitter release despite a slowing of
the kinetics of evoked release in the neurons
of Syt-2 null mice (150), although other ex-
planations are possible.

LOCAL SIGNALING
IN EXOCYTOSIS

Time and distance in regulated secretion have
different scales that apply to its different pro-
cesses; none are likely to be as fast and short
as the final steps of exocytic fusion. The dis-
tances are in nanometers, and time is in mil-
liseconds. The best time estimate for the exo-
cytosis of the entire contents of a single MSG
is <100 ms (36); likely, formation of the fu-
sion pore is on the order of a few milliseconds
(see Reference 151). Regulation of such small-
scale events requires signaling on equally local
scales.

Local Ca2+ Signaling

There is very good evidence for localized Ca2+

signaling relevant to exocytosis (see Reference
152). In nerve terminals, for instance, voltage-
sensitive Ca2+ channels located within tens of
nanometers of primed synaptic vesicle sup-
ply peak Ca2+ concentrations of hundreds of
micromolar in hundreds of microseconds to
drive exocytosis. In many nonexcitable se-
cretory cells, including goblet cells, however,
Ca2+ is supplied from stores in the endoplas-
mic reticulum (68); hence, a close juxtapo-

sition of intracellular Ca2+ stores and apical
membrane exocytic sites is indicated. Unfor-
tunately, epithelia are much more difficult to
work with experimentally than are single cells,
especially when the former need to be studied
as native tissues or primary cultures for clin-
ical relevance. Hence, the advanced biophys-
ical techniques available to the cellular bio-
physicists, e.g., capacitance and amperometry
measurements, have not been applied to the
study of regulated mucin secretion. Nonethe-
less, more indirect observations have yielded
some progress.

One can estimate distances and times for
Ca2+ effects by taking advantage of the 1000-
fold-faster binding kinetics of BAPTA rela-
tive to EGTA; BAPTA and EGTA otherwise
have similar affinities for Ca2+. Model calcu-
lations, for instance, suggest that for cellular
ionic conditions BAPTA buffers a step 10-μM
Ca2+ increase to <1 μM, out to ∼50 nm of
the membrane surface within ∼2 μs, whereas
with EGTA the Ca2+ remains >7.5 μM,
out to ∼125 nm, for >100 ms. In experi-
ments with SLO-permeabilized SPOC1 cells,
we found that BAPTA essentially quenched
the IP3-mediated mucin release allowed by
EGTA, suggesting that the IP3-sensitive Ca2+

release sites on the ER are located very close
to the plasma membrane (67). An ongoing
controversy in secretory biology concerns the
possibility that IP3 receptors are located on
SGs, including MSGs (153, 154). Although
this is an attractive idea, we recently reported
that IP3 receptors colocalize with the ER, not
MSG, in human goblet cells. Additionally,
electron microscopy revealed that the ER ex-
tends throughout the apical pole of the goblet
cells, right up to the plasma membrane (15;
Figure 1). Hence, these data are consistent
with the ER as the source of Ca2+ for regu-
lated mucin secretion, as it appears to be for
other secretory cells as well (see discussion
in Reference 15). Minimally, Ca2+ that is re-
leased locally to the apical plasma membrane
from the goblet cell ER activates actin fila-
ment disruption and remodeling (scinderin),
priming (Munc13), and exocytic fusion (Syt).
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One hopes that future technical advances ap-
plied to the study of goblet cells can de-
termine whether these events are controlled
globally or by sequential, independent regu-
latory events.

Local Lipid Signaling in Exocytosis

In addition to local Ca2+ signaling, local phos-
phatidic acid production by PLD is important
in secretory cell exocytic release (see Refer-
ence 155). The phosphatidic acid produced by
PLD can affect exocytosis indirectly, by being
metabolized to DAG, and/or it acts to pro-
mote membrane curvature and fusion (e.g.,
see Reference 156). There has been no in-
vestigation into the potential roles of either
PLD or phosphatidic acid in regulated mucin
secretion, indicating an area that needs the at-
tention of the field.

CONCLUSIONS

In recent years, the study of airway gob-
let cell physiology and pharmacology has
transcended a focus on important signaling
molecules and cellular messengers to see the
beginnings of more mechanistic studies ori-
ented toward events along the secretory path-
way. To a major degree, this transition has
been helped through the use of genetically
manipulated mice; however, we have also
learned that mouse airway “goblet cells” are
really Clara cells that have undergone mu-
cous metaplasia, suggesting cautious compar-

isons to true goblet cells of human larger air-
ways, which have different cellular origins.
Mucin SGs exist wholly in a storage pool (i.e.,
there is no ready releasable pool, or it is very
small) and must transit the cortical actin cy-
toskeleton to reach exocytic sites on the goblet
cell apical membrane. Disruption of the actin
barrier is achieved through the activation of
scinderin by Ca2+ and, likely, of MARCKS
by nPKCε. Transit through the actin mesh
probably is accomplished by interactions of
MSGs with myosin II and V, with regulation
by Ca2+ and MLCK, by dynamic actin re-
modeling, and possibly with MARCKS; how-
ever, there has been little work in this area.
Interactions of MSGs with the proteins and
protein complexes that effect tethering, dock-
ing, priming, and fusion are in their prelim-
inary stages of understanding, and the rele-
vant proteins are being identified: Rab3d and
27 have been identified as the important tar-
geting GTPases, cysteine string protein and
Hsc70 as potential tethering/docking pro-
teins, Munc13-2 and Munc13-4 as the prim-
ing proteins, Munc18b as the important SM
protein, and syntaxins 2, 3, and 11 and VAMP-
8 as candidate SNARE proteins. Lastly, Syt-2
is an important Ca2+ sensor and fusion activa-
tor for the SNARE complex, although other
isoforms likely are involved. Following the
completion of this inventory phase, we can
look forward to many years of functional stud-
ies before the definitive review that describes
fully the series of events that comprise MSG
exocytosis can be written.

SUMMARY POINTS

1. Polymeric mucin secretion by airway epithelial cells occurs exclusively through reg-
ulated exocytic pathways. The absence of accumulated intracellular mucin in mouse
airway secretory (Clara) cells at baseline despite constitutive polymeric mucin syn-
thesis indicates that this secretory pathway has a baseline level of activity sufficient to
rapidly secrete all newly produced mucin.

2. With inflammatory stimulation of increased polymeric mucin production, intracellu-
lar mucin accumulates in mouse secretory cells in a process termed mucous metaplasia.
It is currently unknown whether mucous metaplasia simply reflects an increased rate
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of mucin production that exceeds the baseline rate of mucin secretion, or whether
inflammatory stimuli also reduce the baseline rate of secretion. In any case, further
activation of phospholipase C by extracellular agonists with the generation of the
second messengers DAG and IP3 results in the rapid secretion of accumulated mucins.

3. Munc13-2, Syt-2, and MARCKS are important mediators of regulated mucin secre-
tion, but the identities and precise roles of many other molecular components of the
goblet cell secretory pathway remain to be defined. Until the constituent proteins
along the entire MSG exocytic pathway are defined and the functions of each compo-
nent understood, it is useful to use the knowledge of these exocytic proteins derived
from other secretory cells to build a working model.

4. In view of the roles of apical extracellular nucleotides in the regulation of airway surface
liquid volume and ciliary beat frequency, their regulation of the rate of polymeric
mucin secretion would provide a mechanism to couple these three key components
of mucociliary clearance.
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