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Abstract
Microbead rheology maps the fluctuations of beads immersed in soft matter to viscoelastic properties
of the surrounding medium. In this paper, we present modeling extensions of the seminal results of
Mason & Weitz (1995, Phys. Rev. Lett. 74) for a single bead and of Crocker et al. (2000, Phys. Rev.
Lett. 85) and Levine & Lubensky (2000, Phys. Rev. Lett. 85) for two beads. We formulate the linear
response analysis for two beads so that the model equations retain: the local diffusive properties of
each bead (through the memory kernel of the shell or depletion zone surrounding each bead), and
the nonlocal dynamic moduli of the medium separating the beads (through the memory kernel that
transmits fluctuations of one bead to the other). We then derive a 3×3 invertible system of equations
relating: an isolated bead’s auto-correlations, the auto- and cross-correlations of two coupled beads;
and, the shell radius surrounding each bead, the memory kernels of the shell and of the medium
between the two beads.

I. INTRODUCTION
In passive microrheology, fluctuations of beads are experimentally recorded. In the 1-bead
protocol, fluctuations from neighboring beads are ignored, assuming the beads are sufficiently
far away from one another, and an inference is made using the Mason & Weitz modeling
formalism about the viscoelastic properties of the surrounding medium (see [1]). The
generalized Langevin equation (GLE) model for the fluctuations assumes a memory drag law,
with a kernel that physically represents some unknown combination of the bulk viscoelastic
modulus of the fluid and the bead-fluid surface chemical potential. Following Levine &
Lubensky ([2], [3], [4]), we call this kernel the inner modulus Gi. The 1-bead protocol from
Mason & Weitz [1] offers a way to recover, in frequency space, the inner modulus through
mean square displacement data. For sufficiently long timescales, a Brownian sphere in a
viscoelastic fluid approaches viscous diffusion with a Stokes drag coefficient. This limiting
behavior is determined by an effective viscosity which takes into account the depletion zone
surrounding the bead as derived by Fan et al. [5]. Another approach taken by Santamaria-Holek
and Rubi [6] is to analyze the Fokker-Planck equation for the probability distribution associated
with the GLE. They obtain short-time power law behavior in the mean-squared displacement
of a bead, depending on the finite size of the Brownian particle relative to the polymer network
and the high frequency behavior of the loss modulus.
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The inability to screen or explicitly account for the effects of bead-fluid interactions through
surface chemistry led to the development of 2-bead microrheology. By careful spacing of the
beads, 2-bead microrheology as presented by Crocker et al. [7], Levine & Lubensky [2], and
Valentine et al. [8] allows for the determination of the bulk viscoelastic modulus of the medium
between the two beads. We call this modulus the outer shear modulus Go. In [7] and [8], the
bead-bead correlations are dominated by Go at leading order in the ratio of the shell thickness
to the bead radius.

Our primary aim in this paper is to extend previous 1-bead and 2-bead models so that local
diffusive (the inner modulus) and nonlocal bulk (the outer modulus) properties are coupled in
such a way that they can both be inferred from experimental data. This aim is achieved by
carrying the analysis of Levine & Lubensky [3] and Chen et al. [9] to linear order in the
asymptotics of the shell radius surrounding each bead. By doing so, we derive an invertible
3×3 system of equations relating single-bead and two-bead fluctuation measurements to the
inner (diffusive) modulus Gi, outer (shear) modulus Go, and γ the ratio of the shell thickness
to the bead radius.

The motivation for this work arises from the Virtual Lung Project at UNC, which aims to model
hydrodynamics of pulmonary liquids and transport of diverse Brownian particles within them.
These challenges require fundamental understanding of both the diffusion of pathogens and
particulates in biological complex liquids such as mucus and their flow transport properties on
scales small relative to typical rheometric probes of dynamic moduli. Another anticipated
application of this work is to passage time of foreign particles through biological barriers (cf.
Hansen & McDonald [10]).

Following Levine et al. [3] we describe, in Section II, a generalization of an elastic problem
to include both inner and outer moduli and the shell thickness in the case where the second
sphere is considered a passive point source of force. In Section III, we present inverse
characterization tools inherent to the two bead coupled GLEs with application for the
determination of the local (Gi) and nonlocal (Go) kernels, as well as the thickness of the
chemically modified layer (or shell [4] or depletion zone [5]). We formulate and analyze the
particular limit where the bead separation distance is approximately 5 to 10 bead radii as in
[3], retaining the terms that are linear in the ratio of shell thickness to the bead radius. These
results, coupled with the single bead results of Mason & Weitz, yield the aforementioned 3×3
invertible system relating one-bead and two-bead experimental data with local and nonlocal
kernels and the shell radius.

II. TWO-BEAD GENERALIZED LANGEVIN EQUATIONS
We consider two spherical beads separated by a radial distance R and we use spherical
coordinates (r, θ, ϕ) with origin centered at bead 1. Let  denote the velocity of beads 1, 2,
respectively in the radial direction,  the velocities in the polar direction and let ζ11, ζ22,
ζ12, ζ21 denote the components of the memory kernel tensor. ζ12 describes the response of bead
2 to the displacement of bead 1 and has been discussed by Levine & Lubensky [4]. The inclusion
of the displacement of the second bead as a force on the first bead leads to the following coupled
Langevin system (see Starrs & Bartlett [11]) for i = r, θ

(1)
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(2)

where the covariance matrix of the random forces is , with kB the
Boltzmann constant and T temperature in accordance with the fluctuation dissipation theorem
(see Bonet Avalos et al. [12]) and ⋆ denotes convolution. We will follow standard practice and
assume ζ11 = ζ22 and ζ12,i = ζ21,i, although these conditions could be relaxed for applications
to heterogeneous materials and/or differently coated beads.

The memory kernel tensor reflects medium viscoelasticity and local bead surface chemistry.
If the system were purely viscous and the bead chemically neutral, then ζ11 = ζ22 = 6πμa and

ζ12 = −9πμa/ρ, where a is the radius of the bead, , R is the bead separation distance, and
μ is the viscosity of the fluid. ζ12 for a viscous fluid corresponds to the lower order term in the
mutual friction coefficient derived by Batchelor [13]. The diagonal memory kernels reflect that
the bead modifies its local environment leading to a local modulus Gi, while the viscoelastic
properties on the separation lengthscale R are given by Go, as first discussed by Levine &
Lubensky ([2],[4]). We assume that each bead is surrounded by a sphere of radius b which
includes the bead and a shell of radius s, and that the viscoelastic properties inside this shell
are characterised by Gi. Since viscoelastic relations can be obtained by generalizing either
viscous or elastic relations, we study the equivalent elastic problem as in [3] (see figure 1).

A. Response functions for a two-fluid elastic fluid
We consider the problem of two spheres of radius a embedded in a shell of radius b in a two-
medium elastic fluid: the Lame constants are λi, μi in the inner shell and λo, μo in the outer
shell (figure 1). We remark that the Lame constants λ, μ allow for the general compressible

case. In the incompressible limit, we have λ → ∞ and , where ν is the Poisson ratio. We

define s so that b = a+s and therefore , with . Solving the
elastic Navier-Stokes equation in the inner and outer shell with an azymuthal symmetric
solution vanishing at infinity, initial displacement in the ẑ direction (given as displacement or
force on the sphere), continuity boundary condition and keeping only linear terms in ẑ, the
inner and outer displacement fields are given by (see also [4])

(3)

(4)

Here  and r ̂, θ ̂ are the unit vectors in spherical coordinates.

In the incompressible limit γ1,o/i = 1 and . The initial condition is ui(a,θ) = ϵẑ. The
force in the ẑ–direction is found by integrating the stress σi,rz = σi,rr cos θ − σi,rθ sin θ over the
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surface of a sphere of radius r (see appendix A). In the incompressible case, we have Fi,z =
8πaC1,iμi and Fo,z = 8πbC1,oμo. This means that the lower order coefficient of the
approximation (i.e the 1/r-term) only depends on the applied force in the ẑ–direction, a result

that is extensively used by Crocker et al. ([7]). We set . In Appendix B, we give the
formulas for the coefficients Cj,i, j = 1,…, 4 and Cj,o, j = 1, 2 as rational functions in β and κ.
We define p1(β, κ) = 2κβ5 − 2β5 − 3 − 2κ and p2(β,κ) = − 10β3κ + 3βκ + 6β + 4β6 − 8β6 κ +
4β6 κ2 − 9βκ2 + 10β3κ2 − 9β5 κ2 + 9κβ5 + 4κ2 + 6κ. Then, since κC1,o = βC1,i, we find that the

force exerted by the bead on the medium at both interfaces is  (see also
Levine & Lubensky [2]).

The response of a bead to a force applied by the medium is assumed to be linear in the
displacement of the form αu⃗ = F⃗, where F⃗ is the applied force, u⃗ the resulting displacement
and α is the compliance/resistance tensor. Since Fz is the force exerted by the medium when
the initial displacement of the first bead is ϵ in the Cartesian ẑ direction, we find that the self-

resistance tensor in the incompressible limit is , where the index 1,1
indicates that the displacement of the first bead is related to the force on the first bead.
Developing β as a Taylor series in γ and using b = a(1 + γ) we find

In the one-medium limit κ = 1 (μo = μi = μ), the compliance tensor reduces to the Stokes
coefficient α1,1 = 6πaμ. Similarly, if γ ≪ 1, α1,1 = 6πaμo.

In order to find α1,2, the compliance tensor of the second bead due to the displacement of bead
one, we compute as a first approximation the displacement at the centre of the second bead,
reducing the second bead to a point source without a shell. As shown by Levine & Lubensky
[3], correction terms induced by the point source approximation are of higher order in R−1.
Prescribing the displacement or the force on the first bead is totally equivalent, so that we might
assume that a constant force Fzẑ is applied on the first bead resulting in an initial displacement
ϵ in the ẑ direction. Since Fo,z = 8πbC1,oμo and Fi,z = 8πaC1,iμi, the coefficients in (3) and (4)
and the added unknown ϵ can be fully determined in terms of Fz. The resulting displacement
in spherical coordinates is then linearly proportional to the force Fz in each spherical direction
r ̂ and θ̂. Therefore we obtain the compliance tensor in spherical coordinates in the
incompressible limit:

which is implicitly available in [3]. Since for an incompressible fluid the Poisson ratio is 1/2,

it follows that . We remark that the lower order term only depends
on the separation distance R between the bead and on the outer viscosity between the beads.

Since the constant force Fz is related to the displacement field of the first bead by α1,1, we
subsitute Fz = α1,1ϵ into the solution (4) evaluated at the separation distance R, again assuming
the second bead to be a point source. Developing β as a Taylor series in γ, setting b = a(1 +γ)
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and defining  we find that the radial and polar components of the displacement field of
the second passive bead are

(5)

(6)

where we used  Thus  can be expressed in terms of
. We remark that Levine & Lubensky [2] and Crocker et al. [7] only

use the first order term in  and zeroth order term in γ in the previous approximation, which
suffices for their goals.

In this paper, we consider the limit in which O(R−3) and O(γ3) terms are neglected in (5)–(6).
This limit arises in experiments, where the beads are far enough away from each other to neglect
terms higher order in R−1 and the thickness of the shell created by the effect of the chemical
coating is small, but not negligibly so, relative to the bead radius. Moreover, we assume (as in
Levine & Lubensky [2], Crocker et al. [7]) that R is constant (fluctuations are small compared
to the separation distance). We find

(7)

Equation (7) will be used to derive a modeling protocol for the determination of both viscosities
μo and μi and the shell thickness γ

B. Generalization to a viscoelastic liquid
To generalize the results obtained in the elastic case we replace the elastic shear modulus
μo/i by  the complex shear modulus, as in [4]. We define G*(ω) = iωη*(ω) = G′(ω) +
iωG″(ω), where η* is the complex viscosity, G′ the loss modulus and G″ the storage modulus.
For simplicity of notation we consider only the equations in radial direction r and we drop the
corresponding subscript. Similar results hold for the angular coordinates. Let û1(ω) and
û2(ω) be the Fourier transform of the radial coordinates of the displacement of each bead.

The viscoelastic generalization of (7) is

(8)
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with . In the limit considered here, the self-compliance coefficient α1,1 is
, so that the generalized Stokes-Einstein relation can be written as

F̂1,1(ω) = α1,1(ω)û1(ω). The drag force on the second bead due to the force on the first bead is
F̂2,1(ω) = −α1,1(ω)û2(ω). With equations (8) we find

Let υ̂1 and υ ̂2 be the corresponding velocities. In frequency space, we have υ ̂j(ω) = iωûj(ω), so
that the force can be expressed with the complex viscosity and the Fourier transform of the
velocities. We define the kernels in frequency space in the following way, keeping only linear
terms in γ

(9)

(10)

Finally, since multiplication in Fourier space corresponds to convolution in real space, we
obtain

(11)

as in the force equations (1)–(2). We note that there is an intrinsic separation of time scale,

since  is constant while determining the relaxation kernel.

C. ”Decoupling” of the Langevin system
We now transform to ”normal coordinates” where the coupled generalized Langevin equations
(GLEs) (1)–(2) are almost diagonalized. We define normal coordinates: V1 = υ1 + υ2 and V2

= υ1 − υ2. Then the GLEs (1)–(2) decouple as

(12)

where ζj = ζ11+(2δj1 − 1)ζ21, and Gj = f1 + (2δj1−1)f2. Since 〈fj(t)fj′(t′)〉= kBTζjj′ (t−t′), and with
the previous definitions of ζ1, ζ2, the covariance matrix becomes
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This decoupling of the random contributions is only valid in the usual approximation that R is
constant.

III. INVERSE CHARACTERIZATION
Based on the Langevin description of a single bead in a viscoelastic fluid, Mason & Weitz
[1] developed a 1-bead microrheology protocol whose idea is summarized in Appendix C.
Neglecting inertia, the Mason & Weitz 1-bead protocol (see Equation (C2)) in one coordinate
direction is

(13)

In other words, measurements of the mean square displacement allow for the determination of
the transform of the inner kernel Gi. Equation (13) is a transform equation and thus does not
directly give access to the physical parameters characterizing the memory kernel in the time
domain. Fricks et al. [14] present a maximum likelihood method applied to single bead time
series data aimed at the reconstruction of kernel parameters of the time-dependent
representation Gi(t).

In the GLEs (1)–(2), the displacement of one bead influences the displacement of the other
bead as in the formula (5)–(6). The goal is to find a formula analogous to (13) using the average
of the cross-correlated displacements 〈Δû1Δû2〉. Crocker et al. [7] ignore higher order terms

and assume that R is constant to conclude that .

We derive instead a formula based on the ”decoupled” Langevin equations (12). We write the
kernels as , where pj are polynomials in three variables:

. Transforming equations (12) into
Fourier space, multiplying by Vj(0) and taking the ensemble average we find

In the limit defined above, we assume that R is constant, so that pj is a constant in the ensemble
average

Here we remark that equipartition of energy reads m〈Vj(t)Vj(0)〉 = 2kBT, because of the two-
dimensional displacement (r, θ). We set ΔUj(t) = Uj(t) − Uj(0). It is straightforward to show
that 2〈V̂j(ω)Vj(0)〉 = −ω2〈(ΔÛj(ω))2〉. Then we obtain for j = 1, 2
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By definition we have

so that, neglecting inertia and using the definition of the complex viscosity we find

Expanding the above equations in a series in γ and ρ−1 gives the general formula for the 2-
point autocorrelation up to error terms O(γ2) and O(ρ−2)

(14)

(15)

Combining Equations (13), (14) and (15), we arrive at a 3×3 system of equations to determine
the local (inner) complex modulus , the outer shear modulus  and the normalized thickness
s of the shell surrounding the bead, given the standard auto- and cross-correlation data from
independent 1-bead and 2-bead experiments. (We note that the Mason-Weitz formula (13) is
recovered by removing the distinction between the inner and outer kernels, .)

We summarize the consequences of these results. We propose a two-step experiment, first with
an isolated bead and then with coupled beads. Tracking one bead which does not interact with
any neighbor, we extract  from (13). Since the displacement of one bead is constrained
to a plane of coordinates (r, θ), (13) has to be multiplied by 2, to reflect the proper equipartition
of energy formula. Tracking two beads interacting with each other in a range where their
separation distance R remains constant and O(R−2) is negligible, we find  from (15).

Finally with the same 2 bead data set,  is given from (14). This protocol assumes that each
bead modifies its local environment in the same way so that 1-bead data can be combined with
2-bead data.

The protocol derived by Chen et al. [9] for determining the bulk modulus and the thickness of
the shell is similar, although based on a different logic and use of experimental data. They

determine an implicit formula for the ratio of  and  containing high order terms in 
as derived by Levine & Lubensky [3]. They then perform a series of 3 experiments with
different bead radii, followed by numerical regression from their formula to determine the shell
radius and the outer modulus. The inner modulus for their particular experimental system was
purely viscous and known a priori. Our asymptotic ordering of the same underlying linear
response equations achieves simplicity in the relations between experimental and model
information: an explicit and one-to-one correspondence between [1-bead mean square
displacement data, 2-bead auto-correlation data, 2-bead cross-correlation data] and [the inner
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modulus, the outer modulus and the shell thickness]. The implied protocol requires
experimental data to be collected for one and two bead experiments and beads with identical
size and surface chemistry.
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APPENDIX A: DETERMINATION OF THE STRESS TENSOR
The quasi-steady state compressible Navier-Stokes is

We make the Ansatz of an azymuthally symmetric and linear in ẑ solution. In spherical
coordinates the general quasi-steady state solution is

In the outer shell the solution vanishes at infinity, so that

Since u⃗ is the displacement field, we define the strain tensor as E in the usual way. The stress
is assumed to be linear and given by Hooke’s law σ = 2μE+λtr(E)I. In spherical coordinates

the stress tensor has the form . The force acting in ẑ through a sphere of
radius r is the opposite of the force exerted by the medium obtained by integrating −σẑ over
the surface of the sphere σẑ = σrr cos θr ̂+σrθ (cos θ−sin θ)θ̂−σθθ sin θθ̂. The normal vector to
the surface is r ⃗ so that σẑ · r ̂ = σrr cos θ − σrθ sin θ = σrz and the force in ẑ through the sphere
of radius r becomes

For the inner and outer shell solution it turns out that the force in the z-direction is independent
of the radius of the sphere, a < r < b or r > b, but only depends on the elastic properties of the
medium, in other words

where aC1,i = B1 and bC1,i = B1 respectively for a < r < b and b < r.
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APPENDIX B: DETERMINATION OF THE COEFFICIENTS Cj,o, j = 1, 2 AND Cj,i,
j = 1, …, 4

In the incompressible limit the constants in the inner and outer displacements are

where p1(β, κ) = 2κβ5 − 2β5 − 3 − 2κ and p2(β,κ) = −10β3κ + 3βκ + 6β + 4β6−8β6κ +
4β6κ2−9βκ2 + 10β3κ2−9β5κ2 + 9κβ5 + 4κ2 + 6κ.

These formulas are mentioned, but not explicitly given, by Levine et al. [3].

APPENDIX C: 1-POINT MICRORHEOLOGY
The Langevin equation for a single bead is

(C1)

The memory kernel ζ is defined for t ≥ 0, but can be extended as ζ(t) = 0 if t < 0. This implies
that the convolution term can be changed from (0, t) to (0, ∞) and the Langevin equation (C1)
transformed into Fourier space retaining the initial conditions for the velocity. Multiplying by
υi(0) and ensemble averaging we obtain

If we consider each displacement coordinate i = r, θ independently, then the equipartition of
energy says that m〈υi (0)υi(0)〉 = kBT. Moreover, we have 〈fi(t)υi(0)〉 =0 (see Duffy [16]), so
that we can write

We set Δui(t) = ui(t) − ui(0) and with 2〈υ ̂i(ω)υi(0)〉 = −ω2〈(Δûi(ω))2〉 we find

Since  (see paragraph IIB equation (9) with κ = 1), the previous
equation becomes
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(C2)
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FIG. 1.
Two elastic spheres model with shells following Levine & Lubensky [3].
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