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a b s t r a c t

We revisit a classical topic: response functions of viscoelastic layers in large amplitude oscillatory shear.
Motivated by questions concerning protective biological layers, we focus on boundary stresses in a par-
allel plate geometry with imposed oscillatory strain or stress. These features are gleaned from resolution
and analysis of coupled standing waves of deformation and stress. We identify a robust non-monotone
variation in boundary stress signals with respect to all experimental controls: viscoelastic moduli of the
layer, layer thickness, and driving frequency. This structure of peaks and valleys in boundary values of
shear and normal stress indicates redundant mechanisms for stress communication (by tuning to the
peaks) and stress filtering (by tuning to the valleys). In this paper, we first restrict to a single-mode non-
linear Maxwell model for the viscoelastic layer, where analysis renders a transparent explanation of the
phenomena. We then consider a Giesekus constitutive model of the layer, where analysis is supplanted
by numerical simulations of coupled non-linear partial differential equations. Parametric studies of wall
stress values from standing waves confirm persistence of the Maxwell model phenomena. The analysis
and simulations rely on and extend our recent studies of shear waves in a micro parallel plate rheometer

[S.M. Mitran, M.G. Forest, L. Yao, B. Lindley, D. Hill, Extenstions of the Ferry shear wave model for active
linear and nonlinear microrheology, J. Non-Newtonian Fluid Mech. 154 (2008) 120–135; D.B. Hill, B. Lind-
ley, M.G. Forest, S.M. Mitran, R. Superfine, Experimental and modeling protocols from a micro-parallel
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. Introduction

The behavior of viscoelastic layers in large amplitude oscillatory
hear (LAOS) has been studied in depth in the rheology literature.
he methods of inquiry are varied, ranging from presumed homo-
eneous deformations where the problem analytically reduces to
dynamical system of ordinary differential equations [7,12,11],

o presumed one-dimensional heterogeneous deformations where
he models are coupled with systems of partial differential equa-
ions [4], to two-dimensional heterogeneity and the need for

emanding numerical solver technology [6].

In LAOS, the rheological focus is typically on departures from lin-
ar responses and good metrics for capturing the onset and degrees
f non-linearity in the system. We refer to [7] and [9,10] for a schol-
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rly treatment of the phenomenological signature of non-linearity.
key diagnostic for divergence from linear behavior is the Lissajous
gure of shear stress (�xy) versus shear rate (�̇) [17]. In the linear
egime, the (�̇(t), �xy(t)) Lissajous figures are characterized by thin
llipses which distort in various ways in the non-linear regime [7].

The phenomenon of interest for this paper is motivated by a
iological query. There are countless examples in biology where a
iscoelastic layer plays a vital mechanistic function; mucus appears
o be one of Nature’s favorite materials. The work of Hosoi and
o-workers has explored snail mucus and locomotion principles
8]. Our focus arises from lung biology, where mucus layers line
ulmonary pathways and serve as the medium between air from
he external environment and the cilia–epithelium complex. The
ypical transport mechanism explored is mucociliary clearance, in
hich pathogens and environmental particulates are trapped by

ucus while coordinated cilia propel the mucus layer toward the

arynx. However, Tarran et al. [13] have documented the role of
scillatory stress in regulating biochemical release rates of epithe-
ial cells. This discovery raises fundamental questions about the
tress signals arriving either at cilia tips or directly to epithelial

http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:lindleyb@math.sc.edu
dx.doi.org/10.1016/j.jnnfm.2008.07.013
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ells from a sheared mucus layer. Air-drag stresses from either
idal breathing or cough are communicated through the mucus
ayer to the opposing interface, whereas cilia-induced strain gen-
rates stress at the same interface. This context leads us to explore
ne driven interface of a viscoelastic layer, either by frequency-
ependent strain or stress, and then to monitor the stress or strain
t both interfaces. We are intrigued by the notion that the dynamic
oduli and thickness of the mucus layer are part of the feedback

oop in the lung by virtue of the stresses and strains they trans-
it to cells. The mechanism explored by Tarran et al. [13] could

imply imply that stronger amplitudes of applied strain or stress
re employed to trigger biochemical releases. However, a more
ntriguing hypothesis will emerge from the results presented here.
amely, at the same applied strain or stress level, such as from tidal
reathing or coordinate ciliary beating, a tuning of wall stresses is
chievable by changes in either viscoelastic properties or thickness
f the mucus layer or the frequency of driving. With these motiva-
ions, we move now to an idealized model and geometry to explore
hese phenomena.

For this paper, we impose oscillatory strain and explore inter-
acial stresses generated from standing waves of stress and
eformation in a viscoelastic layer; later we return to the rela-
ionship between imposed stress versus strain. This formulation

atches the experimental configuration of finite-depth “Ferry-
tokes” viscoelastic shear waves, for which we have recently built
xperimental [5] and modeling [4] tools. Thus, we have ready soft-
are and analytical understanding of the coupled flow and stress
aves in an oscillatory strain-driven viscoelastic layer. We first

nalyze boundary values of shear stress, followed by the genera-
ion of normal stresses through non-linear material properties. We
mphasize that we are interested in the space of solutions of this
ime-dependent boundary value problem, and their variations with
espect to all control parameters in the problem: layer thickness,
requency of driving, and dynamic moduli of the material at the
riving frequency. We focus on the upper convected non-linearity
s the common feature of all non-linear continuum mechanical
aws [14,15]; the results remain robust in the presence of other non-
inearities, such as the Giesekus model, where these phenomena

ere first discovered through numerical studies.
The remainder of the paper is organized as follows: we first

ecall the formulation of the model, and basic mathematical prop-
rties of the time-dependent, one-space dimensional viscoelastic
olutions relevant to oscillatory strain boundary conditions from
4]. Next, we proceed to explore stress communication. Because
f non-linearity, the analogous results with imposed oscillatory
tress do not follow from the strain results: a single frequency
nput strain yields full harmonic stress response, and vice versa.
owever, in the “homeostatic response”, where one focuses on

he frequency-locked response to the periodic strain driving condi-
ion, we can work out the precise relationship between oscillatory
train-controlled and stress-controlled experiments (Section 6) for
he upper convected Maxwell model, another argument for special
ttention to this simplest of all non-linear differential constitutive
aws.

We organize boundary stress signals in terms of “transfer func-
ions” which convey specific information about the response of
he viscoelastic layer. The transfer functions for this paper are
he extreme maximum normal and shear stress signals arriving at
ither plate in oscillatory strain experiments, maximized or min-
mized over the period of the frequency-locked response of the

ayer. Shear stresses oscillate with mean zero, so there is no need
o track their minima. First normal stress differences of the UCM

odel are non-negative, so their extreme convey the bounds on
ormal stress generation. These transfer functions are functions of
aterial and experimental parameters and our focus becomes the

v

i

uid Mech. 156 (2009) 112–120 113

ehavior with respect to each argument. The first illustration is the
ehavior of the extreme boundary shear and normal stress signals
or a series of experiments where the layer height is varied; we
llustrate with three “model fluids” ranging from a highly elastic to
viscoelastic to a simple viscous fluid. We show that the maximum
ormal and shear wall stresses exhibit strong peaks at discrete
epths, with a significant drop between the peaks; this structure
isappears in the viscous fluid limit. We then extend the results
o all other parameters. Finally, to show robustness of the behav-
or, we shift to the Giesekus model. We generate parameter sweeps
f the stress transfer functions, which now require numerical sim-
lations of the governing system of non-linear partial differential
quations at each fixed parameter set. The oscillatory structure in
hese boundary stress signals persists; as noted earlier, we discov-
red this parametric dependence of wall stresses from the Giesekus
ode, so the issue of persistence was never in doubt.

. Mathematical model

We recall the formulation developed in [4,5], which is a gen-
ralization of the Ferry shear wave model [1–3] to finite depth
ayers and non-linear constitutive laws. We summarize the key ele-

ents from these references in order to describe the present focus
n boundary stress signals in oscillatory strain experiments. The
quations of motion for an incompressible fluid are2(

∂�v
∂t

+ (�v · ∇)�v
)

= ∇ · T (1)

· �v = 0, (2)

here T is the total stress tensor, �v is the fluid velocity, and � is the
uid density. The total stress tensor is decomposed as T = −pI + �
nd then the constitutive properties of the viscoelastic material are
rescribed for �, the “extra stress tensor.” The term p, often called
pressure,” is the isotropic contribution to the total stress tensor. We
efer the reader to the recent discussion by Dealy [16] on pressure
easurements and inferences in rheological experiments.
We restrict attention to the simplest non-linear constitutive

aw, the Upper Convective Maxwell (UCM) model, which pos-
esses the convective non-linearity that is common to all non-linear
onstitutive models. In this model, the viscoelastic properties are
oarse-grained into a single elastic relaxation time (�0) and a single
ero-shear-rate viscosity (�0):

0
∇
� + � = 2�0D, (3)

here D is the rate-of-strain tensor, D = 1/2(∇�v + ∇�vT ), and the
pper convected derivative is defined as

= ∂t

∂t
+ (�v · ∇)� − ∇�vT · � − � · ∇�v. (4)

We assume one-dimensional shear flow in the x direction
etween the parallel plates and that vorticity is negligible, so that
y = vz = 0. The two parallel plates remain at heights y = 0 and y = H,
ith strain controls on the lower plate given by the displacement

mplitude A and oscillation frequency ω. This boundary control can
e stated in terms of boundary conditions on the primary velocity
x(0, t) ≡ V0 sin (ωt), (BC1) (5)

2 Throughout this paper, arrows will indicate column vectors, while bold symbols
ndicate tensors.
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here V0 = Aω, while the top plate is held stationary for the pur-
oses of this paper, which corresponds to

x(H, t) ≡ 0. (BC2) (6)

The self-consistent reduction of stress yields �xz = �yz = �zz = 0.
he full model (1–4) reduces to the following closed system of par-
ial differential equations for the remaining unknowns (vx, p, �xx,
yy), which are functions of the gap height (y) and time:

∂vx

∂t
= ∂�xy

∂y
(7)

∂p

∂y
= ∂�yy

∂y
(8)

0
∂�xx

∂t
− 2�0

∂vx

∂y
�xy + �xx = 0 (9)

0
∂�xy

∂t
− �0

∂vx

∂y
�yy + �xy = �0

∂vx

∂y
(10)

0
∂�yy

∂t
+ �yy = 0. (11)

We are only concerned with “homeostatic” responses for this
tudy, in particular the frequency-locked response of the fluid layer
o the boundary control. Thus we suppress the effects of transients
nd initial conditions on velocity, “pressure” and stress. From (11),
yy decays exponentially to zero, and from (8) any gradient of p, will
ikewise converge rapidly to zero. In [4], a complete solution of this
roblem is derived resting on the observation that vx and �xy decou-
le into a linear hyperbolic system once �yy is negligible, and then
he remnant of non-linearity from the upper convective derivative
educes to the solution of (8) with known functions for the velocity
nd shear stress. The 2 × 2 system (7, 9, satisfying BC1 and BC2) is
olved, in the H = ∞ limit by Ferry et al. [1–3], and generalized to
ny finite H by the authors [4]:

x(y, t) = Im

(
V0 eiωt sinh(ı(H − y))

sinh(ıH)

)
(12)

xy = Im

(
−V0�∗ı eiωt cosh(ı(H − y))

sinh(ıH)

)
. (13)

ere we have introduced the complex viscosity, �* = �′ = i�′′, which
or a single-mode Maxwell fluid is

′ = �0

1 + (ω�0)2
(14)

′ ′ = �0ω�0

1 + (ω�0)2
. (15)

The key complex parameter in the response functions for vx and
xy is

= ˛ + iˇ, (16)

he same notation and parameter identified by Ferry in the semi-
nfinite layer limit, which is given for the single mode Maxwell

odel by:

=
√

�ω

2�0

(√
1 + ω2�2

0 − ω�0

)
(17)

√ (√ )

= �ω

2�0
1 + ω2�2

0 + ω�0 . (18)

This solution, though written here for the UCM model, is a spe-
ial case of the solution for a general linear viscoelastic fluid [4,1].

b
t
e
w
m
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he real parameters ˛ and ˇ correspond physically to the attenua-
ion length and wavelength described by Ferry in the semi-infinite
omain problem. In the finite depth layer, our formulas resolve
ounter-propagating waves and thus the physical significance of ˛
nd ˇ is not transparent in a snapshot; instead we have developed
nverse characterization protocols based on microbead tracking and
ingle particle paths [5].

We proceed now to the focus of this discussion, namely stress
oundary signals. With the exact expressions for vx and �xy, the evo-
ution of �xx is now explicitly given by a quadrature solution of (8),

here initially �xx is assumed to be zero:

xx(y, t) = 2

∫ t

0

e(t′−t)/�0
∂vx

∂y
(y, t′)�xy(y, t′) dt′. (19)

The convolution integral cannot be carried out explicitly (at least
ot under the weight of our pen thus far), but can be numerically
valuated. The transfer functions of interest are then given for the
CM model by evaluation of formulas (12), (13) and (19) at y = 0
r y = H. Note that since �yy = 0 in the UCM model after transients
ave passed, the first normal stress difference N1 = �xx − �yy and
xx are used interchangeably until we get to the Giesekus model
imulations.

. Experimental and biological relevance and limitations

It is worth noting some of the inherent limitations of this model
or literal biological applications. First, we have mapped the cylin-
rical pathway to a parallel plate geometry, which suppresses
urvature effects. We have also ignored the asymmetry of the coor-
inated cilia oscillatory pattern, thus removing the translational
omponent of the layer response. Thus our models are faithful to
he micro parallel plate rheometer [5], and the extension of these
esults to an air pathway remains for the future. This simplified
eometry allows us to identify the fundamental mechanism of
oundary stress variations with respect to all experimental con-
rols. Within this model geometry, there remain potential sources of
rror, starting with the effects of the sidewalls, which Ferry and co-
orkers analyzed in their original papers. In our device, the aspect

atio of the gap height to the transverse dimensions is extremely
mall (between 1:20 and 1:100) relative to Ferry’s apparatus, where
he aspect ratio is order 1. Therefore, the transverse component of
aves in our device (due to slightly non-parallel plates) travel far

reater distances where the attenuation properties of the medium
ominate. The boundary conditions in the lateral directions, where
here is a meniscus, are continuity of stress, which will further
uppress back-propagation relative to the Ferry apparatus.

At this point, we are encouraged by the comparison of the model
redictions with experimental data [5]. The biological relevance of
he predictions of this paper to in vivo pulmonary stress signaling
emains a future challenge.

. Stress selection criteria

The primary focus of most studies of large amplitude oscillatory
hear (LAOS) is on the dynamic (time-dependent) responses in a
iven experiment. The dynamic response functions sometimes pre-
ume homogeneous deformations [7] while other studies explore
eterogeneity [6]. Our study admits one-dimensional heterogene-

ty, but we are interested in stress information arriving at layer

oundaries. For a given realization of the experiment, we extract
he extreme boundary shear and normal stress signals arriving at
ither the driven interface or the opposing stationary interface. The
all shear stress oscillates with mean zero and the maximum and
inimum values have the same magnitude, so only the maximum
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Fig. 1. Evaluation of coth(ıH) as a complex-valued function over a range [Hmin,
Hmax] for three model fluids: counter-clockwise from the top, a highly elas-
tic fluid with Maxwell parameters �0 = 1000 g/cm s, �0 = 10 s, a viscoelastic fluid
with �0 = 100 g/cm s, �0 = 1 s, and a fluid near the viscous limit with �0 = 1 g/cm s,
�0 = 0.01 s. Henceforth, we refer to these parameter choices as Model Fluid 1, 2 and
B. Lindley et al. / J. Non-Newton

f shear stress is reported. The normal stress �xx is non-negative.
xtreme values of both shear and normal stress are reported.
hese “transfer functions” are denoted: maxt�xy(0,t), maxt�xy(H,t),
axt�xx(0,t), mint�xx(0,t), maxt�xy(H,t), and mint�xx(H,t). To begin

he discussion we consider maxt�xy(0,t). Later, after we identify
alient features of these transfer functions, we return to the more
raditional Lissajous figures of the time-dependent stress and shear
ate. At that point, we show wall stress fluctuations with parameters
ranslate to Lissajous figure fluctuations.

.1. Analysis of interfacial stress signals

Consider the following “layer” transfer function: the maximum
hear stress of the frequency-locked response, maximized over
ime, retaining its dependence on gap height:

ax
t

�xy(y, t) = max
t

Im

(
−ıV0�∗eiωt cosh(ı(H − y))

sinh(ıH)

)
. (20)

For any fixed gap height, the maximum stress response reduces
o analysis of this function as a function of the material and exper-
mental parameters. At the lower plate, the shear stress response
unction is easily derived (by finding the time of maximum stress
ver each period 2	/ω and then evaluating at that time):

max
xy (�, �0, �0, ω, H) = V0|ı||�∗|| coth(ıH)|. (21)

.2. Height-dependent oscillatory structure in shear stress signals

The simplest dependence of �max
xy (�, �0, �0, ω, H), Eq. (21), is

ith respect to H, the layer height, for which the dependence is
roportional to |coth(ıH)|. Thus, the H-dependence reduces to a
eal-valued function of a complex argument, �H, where ı is the
omplex quantity defined in Eqs. (16)–(18). For fixed material prop-
rties �, �0 and �0, and driving frequency ω, the dependence on

reduces to the evaluation of |coth(ıH)| along the ray ıH in the
omplex plane. Fig. 1 provides a graph of the complex values of
oth(ıH) for a range of H in three physically distinct model fluids: a
trongly elastic fluid with �0 = 1000 g/cm s and �0 = 10 s, a viscoelas-
ic fluid with �0 = 100 g/cm s and �0 = 1 s, and a nearly viscous fluid
ith �0 = 1 g/cm s and �0 = .01 s. The spiral nature of the coth(ıH)

unction simply reflects the exponential behavior for real ı and the
scillatory behavior for imaginary ı. Clearly the polar angle of the
omplex number ı (i.e. the ray ıH) determines whether the stress
ignals are dominated by exponential or oscillatory behavior of the
oth function. This is made precise just below.

Fig. 2 plots the transfer function �max
xy (�, �0, �0, ω, H), which is

roportional to the modulus of the complex-valued spiral in Fig. 1,
or the same three model fluids. Clearly, there are oscillations ver-
us layer height in the shear stress signal at the driven plate (in the
ighly elastic and viscoelastic regimes), with envelopes of the suc-
essive peaks and valleys that derive from the exact formula. The
eaks and valleys of Fig. 2 correspond to the apogee and perigee of
ig. 1, respectively.

The apparent regularity of the locations of the peaks and val-
eys in the maximum plate stress signal versus H is dependent
n the fluid parameters and frequency chosen in Fig. 1. Note, as
e approach the viscous limit, the peaks and valleys vanish. If we

xpress |coth(ıH)| as follows,

coth(ıH)|2 = sin2(2ˇH) + sinh2(2˛H)
2

, (22)

(cos(2ˇH) − cosh(2˛H))

he dual periodic and exponential dependence is transparent.
f the material parameters yield ˛ small with respect to ˇ, for
nstance a model fluid with �0 ≈ 100 cm g/s with a relaxation time
f approximately 1 s, which renders ˛ smaller than ˇ by an order of

3. For future reference, we note that ˛/ˇ = 0.0080 for Model Fluid 1, ˛/ˇ = 0.0791 for
Model Fluid 2 and ˛/ˇ = 0.9391 for Model Fluid 3.
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ig. 2. Maximum shear stress at the lower plate versus layer depth (Eq. (21)) for the
hree model fluids. The peaks and valleys of the response function correspond to the
pogee and perigee, respectively, of the spirals in Fig. 1. For these runs the driving
onditions are A = 0.1 cm and ω = 1 Hz.

agnitude, then the peaks are very regularly spaced. In a viscous
uid, such as Model Fluid 3 in Figs. 1 and 2, ˛ = ˇ and the oscillatory
tructure vanishes.

From (19), we also have a closed-form expression for the first
ormal stress difference N1 = �xx (since �yy = 0). Fig. 3 is a plot of
max
xx and �min

xx at y = 0, again for a range of layer depths. Note that the
axima and minima occur at the same values of H as the maximum
hear stress. This property will be illustrated in more depth below.

.2.1. Lissajous figures
Following the work of [6,7], Fig. 4 presents Lissajous figures

hich show the dynamics of shear stress versus shear rate for a

ig. 3. Maximum and minimum first normal stress difference N1 at the lower plate
ersus layer depth (Eq. (21)) for Model Fluid 2 of Figs. 1 and 2 (note �yy = 0 after
ransients have passed).

n
F
t
n
L
s

F
f

ig. 4. Lissajous figures of shear and normal stress versus shear rate of Model Fluid 2
or three distinct layer heights, H = 5,7.5,10 cm, with a driving frequency of 1 Hz and
ower plate displacement of 0.1 cm. (a) Shear stress versus shear rate. (b) Normal
tress versus shear rate.

iven model experiment. For this sweep, we present only the Lis-
ajous figures for Model Fluid 2, but recognize that Model Fluid
will exaggerate the results of Fig. 2, while Model Fluid 3 sup-

resses the phenomenon entirely. For linear viscoelastic fluids in a
emi-infinite domain, the Lissajous figure is a slanted, thin ellipse
here the slant angle is determined by the ratio ˇ/˛ of the real and

omplex parts of ı [7], and is given as 
 = tan−1˛/ˇ. In the viscous
uid limit, where ˛ = ˇ, the slant angle of the ellipse is precisely
5◦. Fig. 4, also shows the extreme values of shear stress at these
eights for Model Fluid 2 which are 3 of the data points in Fig. 3.

Next, in Fig. 5 we give the analogous Lissajous figures of the
ormal stress �xx versus shear rate, for the same simulations of

ig. 4. The key features are: the normal stress has half the period of
he shear stress and shear rate, and the extreme values are clearly
on-monotone versus layer height H. Lastly, in Fig. 6, we present
issajous figures of the first normal stress difference N1 versus the
hear stress �xy. We find non-monotone behavior consistent with

ig. 5. Time-dependent normal stress versus shear stress loops for Model Fluid 2
or the same data as Fig. 4.
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ig. 6. A frequency sweep of extreme wall shear and normal stresses for Model Fluid
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revious Figures, but further, oscillations in the relative extreme
alues of N1 and �xy. Thus, changing the height of the layer also
ontrols the relative magnitude of the stress components. It is also
lear that the maxima and minima of the shear and normal stresses
ccur at the same times.

.3. Frequency sweeps

Next, we turn to the frequency-dependence of the shear and
ormal stress transfer functions. Their dependence on ω is more
omplicated than H, yet their behavior again is simply a matter of
valuating the explicit formulas (19) and (21). Fig. 6 shows the result
or Model Fluid 2 over the frequency range 0 < ω < 2 for H = 10 cm.
or the previous H sweep in Fig. 2, we fixed ω = 1, and H = 10 was near
peak in the shear stress transfer function. From Fig. 6, it is clear

hat by increasing or decreasing ω from 1, the extreme interfacial
tress functions for normal and shear stress walk off of the peak
alue, but that additional peaks occur near 0.5 cm and 1.5 cm. There
s no need to restrict to studying the transfer of interfacial stress as
function of a single variable. Fig. 7 gives the transfer function for

xtreme interfacial shear stress over several parameters, such as ω
nd H, with a range of frequency and layer height given by ω ∈ [0,2]
nd H ∈ (0,10] for Model Fluid 2. From graphs such as Fig. 7, one can
nd local maxima and minima of the transfer functions over ranges
f the driving and fluid parameters.

.4. Scaling behavior for wall extreme values of shear and normal
tress

Before proceeding to the dependence on the UCM material

arameters �0, �0 and �, we pause to examine the scaling behavior
f the oscillatory structure versus H and ω. Namely, the regularity
f the peaks and valleys versus H and ω is quite striking. From the
nalysis versus H, it is clear that the behavior is not periodic, except

ig. 7. A parameter sweep of extreme wall shear stress for Model Fluid 2 over the
ange of parameters ω ∈ [0,2] Hz and H ∈ (0,10] cm.
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n the elastic limit of � � ˇ. The elastic solid limit is reached by
etting �0 and �0 become large while maintaining a constant ratio.
he attenuation and wave length parameters (˛ and ˇ) become:

lim
�0 → ∞
�0 → ∞
�0/�0 = c

˛ = 0 (23)

lim
�0 → ∞
�0 → ∞

�0/�0 = c

ˇ = ω

√
��0

�0
, (24)

nd the extreme shear stress transfer function, Eq. (21), becomes,

max
xy = V0ˇ�′ ′| cot ˇH|. (25)

Thus, the extreme shear stress transfer function, in the elastic
imit, exhibits asymptotes at,

= 	

H
k k ∈ {0, 1, 2, . . .} (26)

If we now identify the elastic wave speed,

0 =
√

�0

�0�
, (27)

hen ˇ is given by,

= ω

c0
, (28)

nd thus the resonance condition can be restated in the elastic limit
s:
c0

2ω̄H
k = 1 k ∈ {0, 1, 2, . . .}, (29)

here ω = 2	ω̄. In terms of the frequency sweep, the fundamental
requency, denoted ω̄fund, becomes

¯ peak
fund = c0

2H
, (30)

hich is equivalent to a period of plate oscillation that matches
he round trip travel time of the elastic shear wave. Additional
esonance frequencies are integer multiples of this fundamental
requency. Expressing Eq. (29) with respect to any of the fluid or
ontrol parameters gives a resonance condition for that value. For
xample,

fund
peak = c0

2ω̄
. (31)

To extend these results from the elastic solid limit to any vis-
oelastic fluid, consider the non-dimensional parameter ˛/ˇ. Since
< ˇ, then for any viscoelastic fluid ˛/ˇ ∈ (0,1). As we have seen

n Eqs. (23) and (24), the elastic solid limit corresponds to ˛/ˇ = 0,
nd further in the viscous limit �0 → 0 it is clear that ˛/ˇ = 1. With
espect to this parameter ˛/ˇ, a measure of where a fluid is in the
lastic solid to viscous limit, one could gauge the efficacy of using
he elastic solid resonance condition as an estimate for the peaks
nd valleys of the transfer functions. Table 1 explores the usage of
31) as an estimate for the peaks and valleys of the extreme shear
tress for a wide range of ˛/ˇ, and confirms that as ˛/ˇ → 1, the
sage of (31) as a prediction of the first fundamental peak of the
ransfer function becomes dramatically worse.
Fig. 8 gives another interpretation of the data in Table 1, by
raphing the percentage error as a function of ˛/ˇ in the loglog
cale. The data points are fit here by a power law, which becomes a
ine in the loglog scale, and exhibits the nature of the walk off from
ure resonance behavior as a fluid deviates from the elastic limit.
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Table 1
As the fluid parameters are varied from the nearly elastic to the nearly viscous
regime, the occurrence of the first fundamental in H walks off from the elastic
resonance limit exponentially

˛/ˇ Happrox
fund

Hexact
fund

% error

0.000796 0.5 0.49999 <0.00001
0.007957 0.5 0.4999 <0.00001
0.015913 0.5 0.4998 0.0400
0.026515 0.5 0.4995 0.1001
0.039726 0.5 0.4989 0.2205
0.079075 0.5 0.4955 0.9082
0
0
0
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Fig. 9. Relaxation time sweep of extreme boundary shear and normal stresses with
respect to �0 variations of Model Fluid 2. We fix �0 and � of Model Fluid 2 with
boundary values ω = 1 Hz, A = 0.1 cm and H = 10 cm then perform a relaxation time
sweep. The elastic limit scaling prediction of the kth peak is �k

peak
= 0.25 k2.

Fig. 10. Density sweep of extreme boundary shear and normal stresses with respect
to � variations of Model Fluid 2. We fix �0 and �0 of Model Fluid 2 with boundary
values ω = 1 Hz, A = 0.1 cm and H = 10 cm then perform a density sweep. The elastic
limit scaling prediction of the kth peak is �k

peak
= 0.25 k−2.

Fig. 11. Zero shear-rate viscosity sweep of extreme boundary shear and normal
stresses with respect to �0 variations of Model Fluid 2. We fix � and �0 of Model
Fluid 2 with boundary values ω = 1 Hz, A = 0.1 cm and H = 10 cm then perform a zero
.172598 5 4.819 3.756

.237477 5 4.659 7.319

.552726 5 3.820 30.89

n summation, for any fluid with known zero shear viscosity �0
nd relaxation time �0, one can get an approximation of the funda-
ental layer height that will maximize stress transfer. The accuracy

f this approximation can be gleaned by from Table 1. Further, by
olving Eq. (29) for any of the variables, the following approximate
caling conditions (exact in the elastic limit) are identified:

¯ k
peak ≈ kc0

2H
(32)

k
peak ≈ kc0

(2ω̄)
(33)

k
peak ≈ k2 1

4H2ω̄2

�0

�
(34)

k
peak ≈ k2 1

4H2ω̄2

�0

�
(35)

k
peak ≈ 4H2ω̄2��

k2
. (36)

.5. Transfer function dependence on �0, �0 and �

We now illustrate the inferences gained in the previous section.
amely, there is an underlying oscillatory structure in the extreme
alues of boundary stresses with respect to all parameters in the
odel. Figs. 9–11 show this behavior for the baseline properties of
odel Fluid 2 with respect to variations in the elastic relaxation

ime �0, the zero strain rate viscosity �0 and the fluid density �.
ote the stress peaks are quite well approximated by the elastic

imit scaling behavior presented above, formulas (34)–(36).
. Transfer function structure for a Giesekus fluid

Here we refer to [4] for a numerical solution to the analogous
roblem where the constitutive equation is given by a single mode

ig. 8. Percent error calculations for using Eq. (27) to predict peaks of the extreme
hear stress for different viscoelastic fluids with given ratios ˛/ˇ. The scale is loglog
nd thus the trend-line shown is a simple power law fit to the data.

shear-rate viscosity sweep. The elastic limit scaling prediction of the kth peak is
�k

peak
= 400 k−2.

Fig. 12. Maximum shear stress at the lower interface versus channel depth for Model
Fluid 2 with a Giesekus mobility parameter of 0.01. The driving conditions here are
ω = 1 Hz and A = 0.1 cm.
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ig. 13. Maximum shear stress at the lower interface versus frequency for Model
luid 2 with a Giesekus mobility parameter of 0.01. The driving conditions here are
= 1 Hz and A = 0.1 cm.

iesekus model. The boundary stress behavior of this paper was, in
act, discovered in this context. Fig. 12 repeats the H sweep of Fig. 2
or Model Fluid 2 parameters together with a mobility parameter
alue of 0.01. Fig. 13 shows the result of a frequency sweep, while
ig. 14 revisits the Lissajous figures of Section 4.2.1 and obtains the
nalogous results for this model. The striking feature of Fig. 14 is
hat non-linearity is evident at H = 5 and H = 10, but at H = 7.5 the
uid exhibits the classic linear behavior (with the elliptical orbit
een in Fig. 4).

The pertinent features of Fig. 11 are that we see a similar
eight selection mechanism for the transfer of shear stress, and
hat the figure shows additional non-linear structure. Note that the
ocations of the maxima and minima are notably different. Fig. 6
ontains Lissajous figures for various heights. From the Lissajous
gures, it is clear that shear thinning is occurring in the Giesekus
uid at these strains.

. Stress-controlled versus strain-controlled oscillatory
hear

The phenomenon in question has been explored in previ-
us sections for strain-controlled boundary conditions. Alternative
oundary conditions, each modeling a different experimental pro-
ocol, consist of imposing a periodic stress or strain at either
nterface. For example, one can impose a periodic shear stress
oundary condition at the bottom interface, retaining a stationary
op boundary:
xy(0, t) = �0 sin(ωt), vx(H, t) = 0. (37)

It is straightforward to show that this boundary value problem is
quivalent to the strain-controlled problem and solution presented

ig. 14. Shear stress versus shear rate loop for a Giesekus fluid at several heights.
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bove,

x(y, t) = Im

(
V0 eiωt sinh ı(H − y)

sinh ıH

)
, (38)

here V0 is now complex valued and given by,

0 = − �0

�∗ı
tanh ıH. (39)

To relate the complex number V0 above to its more natural phys-
cal interpretation as the maximum imposed velocity of the lower
late we recast the formula,

x(y, t) = Im

(
|V0|ei(ωt+�) sinh ı(H − y)

sinh ıH

)
, (40)

here � = arg(V0), demonstrating a clear equivalence of the two
tress and strain controlled boundary value problems.

Perhaps more physically interesting (especially for applications
o lung biology), is a stress free boundary condition at the upper
nterface together with an oscillatory strain at the lower interface:

x(0, t) = V0 sin(ωt), �xy(H, t) = 0. (41)

The solution is a sum of two solutions of (7)–(11),

x(y, t) = Im

[
eiωt

(
V0

sinh ı(H − y)
sinh ıH

− VH
sinh ı(y)
sinh ıH

)]
, (42)

here the stress free condition at the upper interface determines
H,

H = V0 sech(ıH). (43)

Using a similar approach, one can determine solutions for all
our sets of well-posed boundary conditions. Clearly the phe-
omenon we have identified persists, since it rests on the behavior
f hyperbolic functions along rays in the complex plane.

. Conclusion

The response of a viscoelastic layer in oscillatory shear has been
xplored with a focus on the extreme values of boundary stress sig-
als. The phenomenon we have identified is an oscillatory structure
non-monotone with many peaks and valleys) in boundary stress
ignals with respect to all parameters (layer thickness, frequency
f imposed shear, or material properties). This structure indicates
redundant mechanism with which to either communicate stress

ignals, by tuning to the peaks of the structure, or to filter stress by
uning to the valleys. Using the upper convected Maxwell model,
e provide a rigorous explanation of the phenomenon, and then

llustrate its persistence with a Giesekus model simulation where
he results were first discovered. The relevance of these results to
he biological setting of pulmonary mucus layers remains for future
tudies. The implication we have in mind is the ability of epithelial
ells or cilia to mechanically sense and respond to the variability in
tress signals shown here.
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