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Figure 1: Example visualizations shown to participants asked to perform two tasks in a user study comparing two multivariate 3D visualization
techniques. Left: a scaled data-driven spheres visualization depicting a 4 variable synthetic data set for which participants estimated the value
of variables at a location annotated by a wireframe cube. Right: a superquadric glyph visualization of a similar data set for which participants
identified the two positively correlated variables. See Sections 4 and 5 for details on the visualization techniques and study design.

We present a user study quantifying the effectiveness of Scaled
Data-Driven Spheres (SDDS), a multivariate three-dimensional
data set visualization technique. The user study compares SDDS,
which uses separate sets of colored sphere glyphs to depict variable
values, to superquadric glyphs, an alternative technique that maps
all variable values to a single glyph. User study participants per-
formed tasks designed to measure their ability to estimate values
of particular variables and identify relationships among variables.
Results from the study show that users were significantly more ac-
curate and faster for both tasks under the SDDS condition.

Keywords: multivariate visualization, glyphs, user study

1 Introduction

Advances in scientific technologies have led to three-dimensional
(3D), multivariate data sets becoming commonplace. Visualizing
these data sets is a difficult task complicated primarily by the sheer
density of information that must be projected down to an image.
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Regardless of the visualization technique, increasing the visibility
of each scalar variable makes the resulting image more confusing.

When visualizing multivariate volume data sets, relationship explo-
ration is often the primary goal. Viewers may want to verify or es-
tablish the existence of relationships among the different variables
in the data set. At the same time, viewers may also wish to estimate
data valueswithin the space of the data. One example of such a data
set comes from Magnetic Resonance (MR) spectroscopy, the area
that drives our visualization study. With current technology, radiol-
ogists can produce approximately 20 variables in one multivariate
3D data set, of which 5-10 are of interest at one time.

In this paper, we evaluate a multivariate 3D visualization technique
called Scaled Data-Driven Spheres (SDDS) that extends Bokinsky’s
Data-Driven spots into 3D [Bokinsky 2003]. It displays a set of
spheres associated with each variable for which sphere radius cor-
responds to data magnitude and sphere color is used to distinguish
different metabolites. By comparing the size of the glyphs, radi-
ologists can see how two or more variables relate to each other
throughout the data volume.

Radiologists studying Magnetic Resonance Spectroscopy (MRS) to
better identify tumors drove our visualization design. Our radiolo-
gists colleagues use a combination of traditional tissue Magnetic
Resonance Imaging (MRI) and MRS to scan brain tumors and de-
termine tumor boundaries. Traditional MRI yields volume scalar
fields that describe anatomical tissue. Radiologists combine the
anatomical tissue data with spectroscopic analysis of tumors to find
malignant regions in and around tumors. Radiologists often find
that tumors can extend beyond what is visible in MRI, thus mak-
ing accurate tumor treatment exceedingly difficult. MRS yields a
volume in which each voxel contains a full metabolite spectrum.
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The metabolites represented in these spectra can offer a more accu-
rate indication of the true extent of tumor growth. In our visualiza-
tion system, we combine the SDDS visualization with an interac-
tive anatomical slice plane to allow radiologists to see relationships
among metabolites and anatomical features.

Performing a straightforward computation of a desired metabolite
correlation field would directly answer a subset of the relationship
goal: to understand the correlations among a specific set of scalar
fields. To understand the relationships between more of the vari-
ables, a large number of correlation computations are necessary.
The problem space grows further when other comparison metrics
are used. Also, the radiologists need to see absolute metabolite con-
centrations in space as well relationships, which correlation fields
do not address. Problems such as these require that multiple data
sets be simultaneously visible so that the radiologists can gain in-
sight for which metabolite correlations to actually test.

We show the results of a user study evaluating SDDS at the two
tasks commonly required in multivariate visualizations and re-
quested by our radiologist colleagues:

1. Value Estimation: What are the values of variables at partic-
ular spatial locations?

2. Relationship Identification: What relationships exist among
variables in the data?

To see the results of these studies in the context of other tech-
niques, we had participants perform the same tasks while view-
ing superquadric glyphs, an alternative multivariate 3D visualiza-
tion technique. While other techniques exist for visualizing such
data sets (isosurfaces, multidimensional DVR, parallel coordinates,
etc.), not all of them address both visualization goals. The results
of this study, presented in detail in Section 5, show that viewers are
significantly more accurate and faster at both tasks when viewing
SDDS visualizations.

2 MRI and MRS

Radiologists generate the MRS data set using a technique based on
traditional MRI, which was derived from Nuclear Magnetic Res-
onance (NMR) spectroscopy. NMR was developed to probe the
structure of molecules. Lauterbur and Mansfield extended these
principles to provide spatially resolved information, thus creating
the field of MRI[Castillo 2002]. MRI utilizes the signal from pro-
tons within the tissue of interest to produce an anatomical scalar
volume data set.

Our radiologist colleagues wish to combine anatomical tissue MRI
with raw spectroscopy data that describes metabolic voxel content.
Analysis of spectra enables the radiologists to generate scalar vol-
umes corresponding to the individual metabolic peaks in the spec-
tra [Provencher 1993]. Each of these scalar volumes contains the
absolute concentration of a particular metabolite. When properly
understood in relation to each other, these metabolites offer a more
accurate indication of the true extent of tumor growth than tissue-
based imagery. This is true for two reasons. First, tumors can ex-
tend beyond the boundaries visible in anatomical MRI. By looking
directly at the metabolic composition of brain tissue in addition to
an anatomical signal, radiologists hope to get a better sense of the
extent of a tumor. Second, distinguishing dead tissue from tissue
that only appears dead is difficult after surgery, when it is crucial to
know whether the tumor has been successfully removed. Directly
visualizing the metabolic composition of the tissue addresses this
issue by breaking the tissue signal down into individual components
that radiologists can use to make this distinction.

AnMR spectroscopy data set consists of approximately 20 different

Figure 2: Our radiologist colleagues currently visualize the MRS
data set by overlaying raw metabolite spectra on top of anatomical
MRI slices. This visualization is difficult to understand, even for
specially trained radiologists.

metabolites sampled from a human brain on a 16x16x9 sample grid
with voxels that are 1-2 cm3 in volume. Of those 20 metabolites, 5-
10 are of practical interest for each particular study. In general the
metabolite concentrations have a fairly low spatial frequency. This
makes them amenable to isosurface rendering and volume glyphs.
The radiologists also have traditional anatomical MRI of the pa-
tient’s brain taken during the same sitting as the spectroscopy data.
This anatomical data has a resolution of 256x256x112, where each
voxel is approximately 1-2 mm3 in volume.

3 Related Work

Several classes of techniques can be used to visualize multivari-
ate volume data sets, including surfaces, direct volume rendering
using multi-dimensional transfer functions, correlation fields, and
glyphs. Abstract, non-spatial techniques are also commonly used
in conjunction with spatial views. Surface-based techniques do not
directly apply to this data set as they only convey data values near
visible surfaces, and multiple surfaces occlude each other. Trans-
parency reduces the occlusion while sacrificing important depth
cues. We now show how the remaining classes relate to SDDS and
explain which techniques were included in the user study.

3.1 Direct Volume Rendering

Direct Volume Rendering (DVR) is used to display a single scalar
volume using one or more transfer functions that map data values
to image voxel properties such as opacity and color. The simplest
way to extend DVR to multiple variables is to separately define
opacity transfer functions for each data variable and combine the
resulting images using different color channels (e.g. red, green, and
blue) [Cai and Sakas 1999; Rösler et al. 2006]. Images generated
via this type of color mixing are difficult to interpret when more
than two colors are being combined [Rheingans 1992].
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Alternatively, the standard one-dimensional transfer-function can
be extended to multiple dimensions. The complexity of manipulat-
ing these multi-dimensional transfer functions has resulted in active
research toward user-guided semi-automatic methods [Kindlmann
andWeinstein 1999; Kniss et al. 2001]. With the aid of creative user
interfaces, the process of finding the right transfer conceptually be-
comes user-guided identification of correlations among variables.

3.2 Correlation Fields

Many techniques exist for highlighting potentially meaningful cor-
relations in multivariate data to users. Nattkemper reviewed the
application of several of these techniques to biomedicine, some of
which we describe below [2004]. Principal component analysis
and other dimensionality reduction approaches attempt to project
higher dimensional data spaces down to two or three orthogonal di-
mensions that represent the greatest variation in the data. Broersen
and van Liere apply PCA to raw spectroscopy data to find images
that represent the greatest variation in both feature space and spec-
trum space [2005]. They subsequently auto-generate opacity trans-
fer functions for the computed eigenvectors and display the images
using standard DVR.

Our collaborators require an exploratory view to produce hypothe-
ses about which relationships matter. Crouzil et al. describe an
interface that uses gradient alignment of different scalar fields to
display multiple correlations [1996]. Multi-field graphs provide
an exploratory interface to the large number of potential correla-
tions and use DVR to display a volume of interest in those corre-
lations [Sauber et al. 2006]. Woodring and Shen have designed a
system in which users can combine an arbitrary number of scalar
fields using various set operations (e.g. AND, OR, XOR, etc.) to
generate an interactive expression tree [2006]. These correlation
detection routines turn the multivariate visualization problem into a
guided search through all possible relationships of which there are
O(n!) (where n is the number of fields)..

These techniques result in a single compressed data field. Our ra-
diologist colleague’s must see the raw values of individual fields in
addition to the relationships among them, so we focus on a visual-
ization techniques that can display multiple fields at once.

3.3 Sparse Glyphs

In sparse glyph visualization techniques, data values are repre-
sented via the properties of geometrical shapes (glyphs). The
glyphs must be large enough that multiple data values can be repre-
sented at once using multiple parameterizations that map properties
like shape, size, color, and opacity to variable data values.

The use of sparse volume glyphs for visualization has been actively
studied in tensor field visualization. Kindlmann et al. describe the
use of superquadrics and other shapes for glyph-based tensor vi-
sualization [2006]. They vary the shape and orientation of glyphs
to indicate the magnitude and direction of flow at glyph locations.
Their work is primarily based in 2D tensor field visualization in
which glyph shape varies according to tensor components. Forsell
et al. used 3D glyphs on multivariate data in which they vary prop-
erties like specularity and concavity of a 2D surface representing a
2D scalar field [2005]. These surfaces do not easily extend into 3D.

Ebert et al. have studied glyph usage for multi-dimensional data
visualization, primarily by discussing the different ways of vary-
ing shape to convey different scalar values [2000]. They propose
varying color, size, shape, and opacity along separate scalar com-
ponents. Such an encoding is problematic for the MR spectroscopy
data set because using two different encodings for two semantically

Figure 3: SDDS visualization applied to a data set containing a visi-
ble lesion, shown in gray in the background anatomical data. In this
example, the yellow and orange spheres correspond to choline con-
centration and creatine concentration, respectively. Using SDDS,
it is apparent that the yellow and orange spheres have an inverse
relationship outside the lesion, but both decrease in the lesion. The
relationships is significantly more apparent in 3D with stereo and
motion cues, as described in Section 4.1

.

similar metabolite fields makes relative magnitude estimation dif-
ficult. Some variables will be harder to interpret than others. To
address these issues, we use only color to differentiate metabolite
volumes. The perceptual differences among colors are smaller than
those among shape encodings, as is confirmed in the user study pre-
sented in Section 5.

4 Scaled Data-Driven Spheres

SDDS is a 3D extension of Bokinsky’s 2D Data-Driven Spots, a 2D
multivariate visualization technique [Bokinsky 2003]. In her work,
Bokinsky displays multiple scalar fields using color-encoded Gaus-
sian splats placed on a jittered sample grid and shows that multiple
layers of differently-colored spots were as effective for the display
of the shape of overlapping 2D scalar fields as direct display of the
computed intersection. SDDS extends this to 3D while avoiding
opacity color mixing. BrainExplorer, developed by Lau et al., uses
a similar sphere-based glyph technique to visualize gene expression
in mouse brains [Lau et al. 2008]. This technique was developed
concurrently to SDDS and maps glyph size to expression level and
glyph color to anatomical annotation, gene type, or gene expression
level redundantly. SDDS is similar to BrainExplorer when glyph
size is mapped to expression level and glyph color separates dif-
ferent genes. The results of the user study described in Section 5
should apply to the BrainExplorer work as well SDDS.

The SDDS technique distributes shaded 3D glyphs throughout the
brain volume, as shown in Figure 3. We use spheres for the glyphs,
as these simple glyphs are easy to interpret at a wide range of scales.
Spheres placed along a regular grid exhibit strong aliasing effects,
so we resample the metabolite concentration fields on a jittered ver-
sion of the original sample grid. Each scalar volume uses a sepa-
rately generated jittered grid. The sphere radius is determined as
follows:
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rmax = k
s

2n
(1)

r = rmax

v − vmin

vmax − vmin

(2)

where rmax is maximum glyph radius, r is the glyph radius for
a particular data value v in the range [vmin, vmax], s is the sam-
ple spacing, n is the number of scalar volumes visible and k is a
user-adjustable parameter. When k = 1, the glyphs for all scalar
volumes at a single sample point can fit within a voxel without over-
lapping. When sphere glyphs get too large, they begin to occlude
each other, hiding portions of the volume.

We display multiple metabolite concentration fields by labeling
multiple sets of spheres with unique color values. Because the hu-
man visual system perceives color preattentively, viewers can easily
distinguish the nominally colored variables. In her 2D Data-Driven
Spots visualization, Bokinsky found that viewers could visually at-
tend to a single field in the presence of at least 8 other fields [Bokin-
sky 2003]. The human visual system struggles when differentiating
more than 12 grouped color values [Ware 2000; Healey 1996]. Bar-
ring the background color, 11 thus serves as the theoretical upper
limit of the number of simultaneously renderable metabolite con-
centration fields. Selecting isoluminant colors for the glyphs would
prevent one variable from appearing easier to locate than another,
but results from our user study, described in Section 5, show that the
measured difference for these tasks is not statistically significant.

The inevitable increase in visual occlusion resulting from adding a
new field also limits the number of renderable fields. Depending on
the desired glyph size, sample density, and data sparsity, rendering
more than five to six scalar fields simultaneously begins to cause
over-occlusion. Figure 3 contains an SDDS visualization in front of
an anatomical slice plane, showing the correlation between choline
concentration (yellow spheres) and lesion extent (gray anatomy).

4.1 Anatomical Slice Planes and Stereo Viewing

Radiologists must see the spectroscopy data in the same space as
anatomy data to evaluate tumor activity in and around lesions vis-
ible in anatomical scans. We therefore combine SDDS with an in-
teractive gray-scale anatomical slice plane.

Stereo helps viewers to disambiguate depth in the renderings and
thereby have a fuller understand the shape of the different scalar
fields. This is primarily needed due to the large amount of data on
display at any given point in time. Stereo is often used in visual-
izations of amorphous, organic structures, where shape and rela-
tive position of structures is important. Molecular visualization is
the most common of these types of visualizations, for which re-
searchers frequently include cross-eyed or anaglyphic stereo pairs
for print publications. Shutter stereo goggles, which synchronize
with graphics hardware to display different images to each eye,
have become well-supported, inexpensive hardware components
that are easy to integrate into any 3D application.

5 Glyph User Study

We designed a study to evaluate SDDS on how well it addresses the
MR spectroscopy visualization goals, renumerated below:

1. Estimate values of multiple variables in local data regions.

2. Identify relationships between data variables.

The study therefore consisted of two separate tasks performed by
participants that explored both goals.

(a) Superquadric Shapes

(b) Task 1 Example

Figure 4: a) Example superquadric shapes with four variable prop-
erties. b) An example visualization of the type participants saw
during the value estimation task. The participant first estimated the
value in the cube for variable A, as designated by the labeled 3D
legend, then variable B.

While absolute performance measures are useful, to put the results
of this study in context with other similar visualization techniques,
we therefore also evaluate superquadric glyphs. We compare SDDS
only to superquadric glyphs because we are unaware of any other
visualization techniques that can simultaneously display the raw
values of four or more volume fields. DVR with multi-dimensional
transfer functions (Section 3.1) and guided exploration techniques
(Section 3.2) reveal relationships, but they are generally used to
visualize a single field representing a computed relationship of in-
terest. Surface-based techniques described in Section 3 can be used
to display multiple fields, but surfaces do not convey raw data val-
ues in regions away from the surface. 3D glyph-based techniques
are the strongest candidates for this type of visualization, and we
use superquadric glyphs to represent the class of techniques that
represent multiple variables in a single, more complex glyph.

We generated all of the visualizations in the study using randomly
generated four variable data sets. We chose this number of variables
for two reasons. First, our radiologist colleagues are currently inter-
ested in four metabolites (choline, creatine, NAA, and lipids). Sec-
ond, toroidal superquadric glyphs have four natural variable prop-
erties: thickness, overall roundness, cross-section roundness, and
color. SDDS can potentially accommodate more than four vari-
ables, but additional properties for the superquadric glyphs (e.g.,
size) tend to interfere with the other properties. For the spheres,
we assigned the variables to four sphere colors: red, yellow, green,
and cyan. These match the basic color opponency channels in the
human visual system.

The range of glyphs for each variable property of the superquadric
glyphs was chosen to maximize dynamic range and intuitiveness.
Toroidal thickness ranged from thin but visible to thick but open.
The color variable used a truncated black-body radiation color map
with black removed so as to not conflict with the dark background.
This resulted in a red-yellow-white color map.
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There is a clear trade-off between dynamic range and intuitiveness
in the roundness variables. We decided that they should vary from
completely square to completely round, even though both variables
can continue beyond completely round shapes to produce concave
shapes. We did not include this range of shapes because the transi-
tion from round to concave is not as intuitive as the transition from
square to round. A shape map including both sets of transitions con-
tains a perceptual discontinuity that does not correspond to features
in the data.

We sampled the data using four SDDS spheres for every su-
perquadric glyph, where the spheres each had diameters of approx-
imately half the width of the superquadric glyphs. This ensured
that both glyph techniques sampled the data at the same density.
As a result, the SDDS spheres were four times as dense as the su-
perquadrics.

The randomly generated collection of data sets were designed to
have similar properties to MR spectroscopy data. The MR spec-
troscopy metabolite fields exhibit slow spatial variation, so each
data set was a composite of several Gaussian fields with random-
ized centers, orientations, and variances in each dimension. The
four data sets for each trial were randomly selected from a set of
50 such fields. The randomized order of data sets was different for
each participant. After randomly selecting an initial visualization
type, visualizations alternated between SDDS and superquadrics.

User study participants were asked to view the glyph visualizations
while wearing stereo goggles. They were also given the ability to
toggle movement and rotation of the visualization camera along a
fixed path. We did not allow users to directly manipulate the camera
(for example, using the standard mouse/trackball interaction style)
because a participant’s previous experience with the mouse and user
interface could potentially confound results.

5.1 Task 1: Value Estimation

For the first task, participants viewed alternating visualizations us-
ing SDDS and superquadric glyphs and were asked to estimate the
value of two of the four visible variables at a particular region in
space. Participants were allowed to enter discrete multiples of .1
ranging from 0 to 1. The region of interest was labeled using a
white wireframe cube. Because this is an inherently 3D task, the
visualizations also contained a 3D legend for the two variables of
interest that rotated along with the glyphs, as shown in Figure 4.
In the superquadric legend, all variables except for the variable of
interest were set at their middle value (0.5). For this task, we mea-
sured response accuracy and response time.

5.2 Task 2: Correlation Identification

The second task consisted of participants identifying the two vari-
ables present in the data that contained a strong positive correlation.
The data for three of the variables were randomly selected from a
data set generated as described above. One of those three variables
was subsequently selected at random to be uniformly scaled down.
This then became the fourth data set, thereby ensuring that any ac-
cidental positive correlations of the other variables would not be as
strong as the perfect correlation. As with Task 1, a 3D legend was
presented to the users, however this legend displayed all four vari-
ables at once, as shown in Figure 5. For this task, we tracked the
participant’s two responses and response time.

5.3 Equipment and Materials

We ran the user study on a computer containing a NVIDIA Quadro
FX5600 GPU with 3-pin stereo output. Participants wore Crys-

(a) SDDS

(b) Superquadrics

Figure 5: Example visualizations of the type participants saw dur-
ing the correlation identification task. The participant estimated
which two variables, demonstrated in the 3D legend above the data,
were positively correlated with each other. The same data is used in
both visualizations, where variables B and C have a strong positive
correlation. When viewed in stereo and in motion, the images are
sparser and clearer.
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Figure 6: Average value estimation error for the first user study
task. Users were 37% more accurate with the SDDS visualization
as compared to the superquadric glyph visualization. Expected er-
ror due to discretization of possible responses is .05.
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Figure 7: Average response time for the first user study task. Users
were 20% faster with the SDDS visualization as compared to the
superquadric glyph visualization.

talEyes goggles throughout the experiment synchronized with a 21“
flat screen CRT refreshing at 60 Hz per eye. All interaction with the
visualization was through a 40-key X-Keys programmable keypad
customized for this study. We chose this input device to avoid po-
tential error caused by varying levels of computer experience in the
participants. The study was performed in a darkened room with a
small desk lamp illuminating the keypad.

5.4 Procedure

We ran the study on 17 participants (14 male, 3 female). All par-
ticipants were first led to a private room where they read a short
document explaining the data and visualization techniques. They
then read about the first task (value estimation) and began an 8
trial training session with no data recorded, mimicking the upcom-
ing recorded session. Participants could ask clarifying questions
throughout the introduction and training session. Once the train-
ing session was complete, the tester left the room and participants
began a 60 trial recorded session on the first task.
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Figure 8: Average error all glyph properties. Cross-section round-
ness and to a lesser extent overall roundness accounted for most of
the error for the superquadric glyphs.

Participants could take a short break following their completion of
the first task, after which they read a short introduction to the sec-
ond task (correlation identification). A second 8 trial training ses-
sion then began with the tester present, followed by 40 timed tri-
als with the tester absent. We used fewer trials for this task both
to avoid fatigue in participants and because a pilot study indicated
that 40 trials would be sufficient to achieve statistical significance.
Once participants finished the second session, they filled out a short
follow-up questionnaire asking them for visualization preference,
ratings for each task, and general comments.

6 User Study Results

We now present the accuracy and response time for both user study
tasks. Response error for Task 1 and response times for both tasks
were analyzed using generalized linear models with normal distri-
butions. Because Task 2 error is a binary value (correct vs. incor-
rect), we used a generalized linear model with a binary distribution.
All error bars in the figures correspond to standard error. Addi-
tionally, participants did not exhibit a significant learning effect in
either the value estimation task or the correlation identification task.
The initial training sessions for each task successfully help partici-
pants past the initial learning curve.

6.1 Task 1: Value Estimation

Participants viewing the SDDS condition responded with an mean
error of .0839 units, or 8.39% of the value range. Because partic-
ipants could only enter discrete multiples of .1, perfect accuracy
would involve an expected mean error of 0.05, or 5% of the value
range. The mean response time for SDDS was 27.7 seconds.

Response error was on average lower for the SDDS condition.
The mean value estimation error for superquadrics was .1325 units
(13.35% of the value range). Participants were 37% more accurate
with the SDDS condition. The probability that these two means rep-
resent the same distribution (the p value) is less than .0001. Figure
6 presents this data along with standard error bars.

Response time was also lower for the SDDS condition. The mean
response time for superquadrics was 34.5 seconds, a 20% mean
improvement from SDDS to superquadrics. This is the measured
time it took a participant to estimate the values of two variables, so
we infer than the mean response time for estimating a single value is
13.4 seconds for SDDS and 17.3 seconds for superquadric glyphs.

Whereas the error across the different SDDS colors was not sta-
tistically different, the value estimation error for the superquadric
glyphs was weighted heavily to the cross-section roundness vari-
able and to a lesser extent the overall roundness variable. The mean
error for the SDDS colors confirms that these four colors, despite
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Figure 9: Average correlation identification error for the second
user study task. Users correctly identified the correlated pair 70%
more often with the SDDS visualization as compared to the su-
perquadric glyph visualization.
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Figure 10: Average response time for the second user study task.
Users were 47% faster with the SDDS visualization as compared to
the superquadric glyph visualization.

having different luminance, do not significantly affect viewer per-
formance. The mean error per variable is shown in Figure 8.

6.2 Task 2: Correlation Identification

For the SDDS condition, participants incorrectly identified the cor-
related pair of variables on 23.8% of the trials with a mean response
time of 23.1 seconds. Participants viewing the superquadric condi-
tion incorrectly identified the correlated pair 79.1% of the time with
a mean response time of 42.8 seconds. Comparatively, participants
were 70%more accurate and 47% faster under the SDDS condition,
both with p < .0001. This comparison is shown in Figure 9. The
error bars on Figure 9 are asymmetric because binary distribution
analysis is done in log space.

Participants viewing the superquadric glyph condition correctly
identified the correlated pair only slightly more often than chance.
For four variables, the probability of randomly selecting the correct
pair is 16.7%; participants correctly identified the correlated pair
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Figure 11: Average number of incorrect identifications per glyph
property for the second user study task. The sphere glyph properties
all exhibit uniform error distributions. The color property of the
superquadric glyphs was chosen incorrectly noticeably more often
than the other shape properties.

only 20.8% the time. Figure 11 shows the mean frequency with
which participants selected a variable that did not belong to the cor-
related pair. The four SDDS color variables were chosen incorrectly
at a uniform rate, whereas the error for the superquadric proper-
ties is unevenly distributed. Participants tended to select color for
the superquadric glyphs far more often than they should have. Re-
sponses from the follow-up questionnaire confirm the fact that par-
ticipants often began looking at color first because it was the easiest
property to see. This imbalance in shape properties has a significant
effect on what variable relationships viewers perceive.

One concern with SDDS is that the sphere colors have different
luminance and thus are perceived differently. For the correlation
identification task, the differences between mean identification er-
rors for the four SDDS colors do not appear to vary with color lu-
minance, nor do they appear to vary significantly.

6.3 Follow-up Questionnaire

After completing Task 2, participants filled out a short question-
naire in which we asked them to evaluate the two visualization
techniques they saw. All participants but two preferred the SDDS
visualizations over the superquadric glyph visualizations. Reasons
for these responses included the simplicity of the color map and
value range of the spheres and the complexity and variability of the
superquadric properties. One participant preferred the superquadric
glyphs for Task 1 because the glyphs were less densely packed, but
found SDDS simpler for Task 2. The data for the two participants
did not support their stated preferences, as both performed more
accurately and faster when viewing SDDS visualizations.

We also asked participants to rank the four superquadric variable
properties in order of ease of interpretation. The rank for each vari-
able are as follows: color ranked 1, thickness ranked 2.23, overall
roundness ranked 2.77, and cross-section roundness ranked 4. Par-
ticipants were in unanimous agreement about the rankings of color
as easiest and cross-section roundness as most difficult. Several par-
ticipants made the comment that the color and thickness variables
”stood out“ to them, whereas the roundness variables did not. Most
participants commented on the difficulty of interpreting the cross-
section roundness variable. These perceived preferences support
the error measurements taken in Task 1 and Task 2.

Participants also made several recurring general comments about
the different glyphs. Many participants required repeated explana-
tions to understand the cross-section variation, and many also said
that this property was difficult to understand because of insufficient
shape variability. This is reflected by the individual variable errors
shown in Figures 8 and 11. Increasing this channel’s dynamic range
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by including concave shapes could ameliorate this discrepancy.

7 Conclusion and Future Work

We presented a user study evaluating the effectiveness of SDDS
for multivariate 3D data sets similar to those used by radiologists
studying MR spectroscopy. Effectiveness has been defined as how
well viewers could perform two tasks designed to address the orig-
inal visualization goals: value estimation and relationship identifi-
cation. Additionally, we have evaluated superquadric glyphs, alter-
native spatial multivariate 3D visualization technique, for context
and comparison. While the error rates were nontrivial, they are not
unreasonable for an exploratory visualization system. Compared
to the superquadric condition, participants were significantly more
accurate and faster at identifying positive correlations and estimat-
ing data values with SDDS visualizations. The contrast between
the two visualization techniques was particularly dramatic for the
correlation identification task, with participants responding nearly
twice as quickly and more than twice as accurately.

We do not claim to have tested the ideal set of shape-varying glyph
properties or the perfect dynamic range for those properties, nor do
we claim that SDDS is always better for these tasks. However,
the results do highlight an important effect of choosing variable
channels that are not perceptually equivalent. The most common
explanation given by participants for why they preferred SDDS
to superquadrics was that the superquadric roundness properties
were much more difficult to interpret than thickness or color, which
was the property that participants understood the most accurately.
SDDS uses color in a more perceptually uniform nominal color
encoding for different variables. Because humans perceive color
preattentively, distinguishing between two colors is generally eas-
ier than distinguishing between color variation and shape variation.

From a visualization design perspective, this difference between
variable channels results in an emphasis of one variable over an-
other. This is not necessarily a bad decision. The freedom to manip-
ulate the dynamic range of particular variables that results from us-
ing perceptually different channels is useful if one variable is more
important than another for the viewer. That said, a study of the
parameter space of shape-varying glyphs is necessary to customize
dynamic range accurately. This requirement may prohibit the use
of significantly different variable channels in a visualization like the
superquadrics described in this work.

Glyph-based techniques like SDDS apply most directly to data sets
with slow spatial variation, as is the case with the MR spectroscopy
data set. Applying SDDS to high-frequency data sets will reveal
low frequency trends in properly filtered data. SDDS will also work
well when visualizing sub-regions of high frequency data.

The SDDS visualization enables viewers to explore and analyze re-
lationships in multivariate volume scalar fields. To our knowledge,
SDDS is the only multivariate scalar volume visualization tech-
nique that can potentially to scale to 11 simultaneous display chan-
nels. Multivariate scalar visualization problems also exist in con-
focal microscopy, where researchers capture volume data labeled
with multiple fluorophores. SDDS may also apply in cell chemistry
simulation, where complex cell reactions are observed over time.
As we continue to improve the SDDS technique, we hope to enable
such researchers outside of MR spectroscopy to better understand
the relationships and values in their complex data sets.
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RÖSLER, F., TEJADA, E., FANGMEIER, T., ERTL, T., AND

KNAUFF, M. 2006. GPU-based multi-volume rendering for
the visualization of functional brain images. In Proceedings of
SimVis 2006, 305–318.

SAUBER, N., THEISEL, H., AND SEIDEL, H.-P. 2006. Multifield-
graphs: An approach to visualizing correlations in multifield
scalar data. IEEE Transactions on Visualization and Computer
Graphics 12, 5, 917–924.

WARE, C. 2000. Information visualization: perception for design.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

WOODRING, J., AND SHEN, H.-W. 2006. Multi-variate, time
varying, and comparative visualization with contextual cues.
IEEE Transactions on Visualization and Computer Graphics 12,
5, 909–916.

68


