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Abstract. Passive microrheology [12] utilizes measurements of noisy, entropic fluctuations
(i.e., diffusive properties) of micron-scale spheres in soft matter to infer bulk frequency-dependent
loss and storage moduli. Here, we are concerned exclusively with diffusion of Brownian particles
in viscoelastic media, for which the Mason-Weitz theoretical-experimental protocol is ideal, and the
more challenging inference of bulk viscoelastic moduli is decoupled. The diffusive theory begins
with a generalized Langevin equation (GLE) with a memory drag law specified by a kernel [7, 16,
22, 23]. We start with a discrete formulation of the GLE as an autoregressive stochastic process
governing microbead paths measured by particle tracking. For the inverse problem (recovery of
the memory kernel from experimental data) we apply time series analysis (maximum likelihood
estimators via the Kalman filter) directly to bead position data, an alternative to formulas based on
mean-squared displacement statistics in frequency space. For direct modeling, we present statistically
exact GLE algorithms for individual particle paths as well as statistical correlations for displacement
and velocity. Our time-domain methods rest upon a generalization of well-known results for a single-
mode exponential kernel [1, 7, 22, 23] to an arbitrary M -mode exponential series, for which the GLE
is transformed to a vector Ornstein-Uhlenbeck process.

1. Introduction. In this paper we focus on the diffusive transport of micron-
scale particles in viscoelastic media. We are motivated by applications to pathogen or
drug transport in pulmonary liquids (mucus) or in other biological protective barriers.
We are interested in inverse methods (inference of diffusive transport properties from
the primitive experimental data), and in direct simulation tools to generate both
experimental time series and statistical properties such as mean-squared-displacement
and velocity autocorrelations.

To accomplish these goals, we borrow the theoretical and experimental framework
from passive, single-particle microrheology as proposed by Mason and Weitz [12].
Their goal was more ambitious: from diffusive transport statistics (mean-squared-
displacement) of dispersed microbeads, they infer bulk viscoelastic properties of the
material. The Mason-Weitz theory thus combines two essential elements: a gen-
eralized Langevin equation (GLE) with a memory drag law to model the diffusion
process, together with a generalized Stokes-Einstein relation (GSER) that relates the
GLE memory kernel to the bulk viscoelastic modulus of the medium. We adopt
only the first element, since we are exclusively interested in particle diffusion, thereby
avoiding the harder problem of a direct relationship between diffusive properties and
dynamic bulk moduli of the host material. The time series methods applied here are
ideal for single-particle tracking experiments, which our colleagues R. Superfine, D.
Hill and J. Cribb perform.

There are numerous complexities in soft matter, and especially biological mate-
rials, that frustrate a direct association of the diffusive memory kernel with the bulk
viscoelastic modulus. Particle surface chemistry with the host material, particle size
relative to material network lengthscales (e.g. mesh size), and heterogeneity each
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present nontrivial challenges. However, these issues are all circumvented for our less
ambitious goal: to infer diffusive transport properties from displacement path data of
microbeads. Then, one simply has to focus on inference of the memory kernel in the
GLE from experimental data. We therefore choose to call the GLE memory kernel
a “diffusive transport modulus”, to emphasize that we are not attempting to link
diffusive transport properties and bulk viscoelastic moduli.

Our inverse method applies directly to path data from particle-tracking experi-
ments, namely, position time series. This has potential advantages to ensemble averag-
ing in frequency space, the standard approach. First, the information from individual
paths is utilized, and far less data is required for parameter inversion. Second, unlike
traditional microrheometry, we aim to use the results of inverse characterization to
directly simulate single-particle diffusion (single paths and statistics) in biological lay-
ers. For this purpose, a time-domain representation of the memory kernel is required,
which our approach yields. The Mason-Weitz method [11, 12] yields the unilateral
Fourier transform of the imaginary part of the memory kernel, followed by applica-
tion of Kramers-Kronig relations to get the real part. We refer to a very nice review
article by Solomon and Lu [20] for discussions of the numerical methods associated
with mapping the kernel back to the time domain.

Our second goal of direct simulations of diffusive transport processes requires fore-
thought with respect to how one will numerically implement the modulus information
gained from the inversion step. In standard inverse characterization in rheology, it
is sufficient to restrict data-fitting and modulus characterization in the frequency do-
main. For direct simulations, we need the time domain kernel. Thus we propose a
time-domain method of inversion of the memory kernel that avoids issues with in-
verse transforms as discussed in [20]. Indeed, our long term goal is to couple the GLE
with other dynamic processes in the biological context, e.g., pathogen diffusion in
advected pulmonary liquids, or general situations where there are deterministic forces
and particle-particle interactions.

Another motivation for time-domain methods is the possibility of inversion from
much smaller data sets, e.g., single paths which may not be sufficient for frequency
binning whereas statistical analysis of individual time series data may prove sufficient.
Finally, for very small volume materials there will be constraints on the amount of
sample path data that can be collected (e.g., low bead volume fractions can easily
introduce colloidal effects), and a low number of sample paths may not be statis-
tically significant for ensemble averaging. Perhaps the most compelling reason for
the method proposed here is that inversion is performed directly on the physically
measured data. In this paper, we present the conceptual framework and a proof-of-
principle illustration of our time-domain methods, for the Langevin and generalized
Langevin models. Particle displacement data is first generated from direct GLE sim-
ulations with a prescribed diffusive transport modulus (memory kernel); we then
analyze the data with the inverse methods as though the data were path data from
particle tracking experiments. A comparison of prescribed versus recovered modulus
parameters is the accuracy benchmark enforced in this “methods” paper. We also
compute mean-squared-displacement (MSD) statistics directly from our formulation
of the GLE, and show agreement with ensemble averaging of path data.

The inverse characterization strategy introduced here is based on statistical tools
developed in the field of time series analysis. These tools yield:

i. estimates of the viscoelastic material parameters directly from single or multiple
time traces of Brownian particles;
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ii. standard errors for those estimated parameters; and
iii. goodness of fit criteria.

Thus, the methods convey whether the parametrized memory kernels accurately
fit the data, and in practice, how many discrete modes are needed to get a best fit. We
also explore protocols for experimental sampling times and their impact on parameter
inversion.

We consider an exponential (Prony) series approximation to the memory kernel,
which turns out to be particularly efficient for both inversion and direct simulations.
Aside from special GLE kernels, such as Rouse and Zimm type which are special
cases of the class considered here, there is very little known about the anomalous
(sub-diffusive scaling on intermediate timescales) behavior of Brownian particles. We
refer the reader to [17, 21] for details. For this paper, we show our direct simulation
tools recover classical Rouse and Zimm scaling properties of MSD statistics when the
kernel is prescribed according to the Rouse or Zimm relaxation spectra.

The remainder of the paper is organized as follows. The standard Langevin equa-
tion for a particle diffusing in a viscous fluid is presented as a tutorial to introduce
the statistical methods. In particular, we illustrate the relationship between the exact
Langevin quadrature solution for particle position and autoregressive time series mod-
els. We also use the Langevin equation to introduce maximum likelihood methods
for performing statistical inference of the single material parameter in the Langevin
model, the fluid viscosity. Furthermore, we formulate the parameter inversion meth-
ods when only partial observations of the system are measurable (position but not
velocity of Brownian particles), which is the situation in microbead rheology. Next,
we show how this methodology naturally extends to multivariate autoregressive mod-
els for GLEs with memory kernels that can be written as the sum of exponentials.
The single-mode exponential kernel is presented as another tutorial example of the
direct and inverse methods, since this example can also be analyzed in explicit, closed
form. Next, 4-mode kernels, of classical Rouse and Zimm form, are used as a non-
trivial illustration of the direct and inverse methods, and finally a 22-mode Rouse
kernel is presented to show the direct simulations are not limited to a sparse, discrete
spectrum.

A significant by-product of these investigations arises from two critical observa-
tions:

• GLEs with arbitrary finite-mode, exponential kernels are exactly integrable
with a quadrature solution[7]; and

• the quadrature formula extends from the continuous GLE process to a dis-
cretized dynamics.

These two observations yield a statistically exact, discrete-time autoregressive pro-
cess model of a Brownian particle in a viscoelastic medium. The first-order Taylor
approximation of this discrete process corresponds to a first-order Euler numerical
integration scheme. This class of discrete GLE models thereby provides a highly effi-
cient and accurate direct time-domain simulation method. We can generate realiza-
tions of Brownian particles in a viscoelastic fluid, based on matrix function evaluation
rather than a low order numerical integration of the stochastic GLE model. Further-
more, average properties (mean-square displacement and velocity correlations) also
have explicit quadrature representations, so that statistical correlations may be sim-
ulated directly, avoiding the arduous alternative of generating sample paths and then
averaging. In examples presented below, we benchmark the numerical tools by con-
firming agreement between the two ways of computing MSD statistics. These direct
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simulation results thus afford the ability to simulate time-domain experimental data
of individual particles as well as statistical scaling properties of Brownian particles
for any given exponential series form of the memory kernel in the GLE model.

For arbitrary M -mode kernels with M > 1, there is one numerical analysis result
required to assure accurate computation of matrix exponentials in the discrete and
continuous quadrature formulas, which we provide in the Appendix. With this result,
numerical simulations are carried out in the body through various explicit examples. It
is worth emphasizing that this approach — replacing stochastic numerical integration
by matrix function evaluation in a discrete GLE process, for individual paths as well
as for average properties of the process — is guaranteed to be statistically correct,
even for sufficiently long time series. This strategy removes two dominant sources
of numerical error in the direct problem of time-domain simulation: the error at
each time step from a low-order integration method instead of an exponential-order
method; and the cumulative error in time-stepping, which is completely avoided.
Because many generic memory kernels can be approximated to arbitrary accuracy
with a sum of exponentials, this simulation method should find utility in diverse
applications outside of pulmonary liquids. The range of diffusive dynamic scaling
behavior of individual Brownian particle paths, and of ensemble averages, is a topic
for future study to understand the range of diffusive transport statistics possible for
GLEs with exponential series kernels. The known theoretical results for Rouse and
Zimm spectra will be illustrated and confirmed below as rigorous benchmarks on our
direct simulation strategy, as well as for inverse characterization benchmarks of the
maximum likelihood method.

2. The Langevin Equation and Statistical Methods. In this section, we
review the basic properties of the classical Langevin equation for a microscopic par-
ticle diffusing in a viscous fluid, as a transparent context to introduce our statistical
approach. The solution of the Langevin equation can be exactly represented as a
Gaussian autoregressive statistical model (cf. [8]). Thus, a maximum likelihood ap-
proach can be used to estimate model parameters from time series data. To illustrate
the methodology, the statistical tools are developed first assuming the velocity of
the particle is directly measured. However, in microscopy experiments the particle
position (and not velocity) is measured. Thus, using standard techniques, we next
generalize the statistical framework to a two-dimensional Langevin equation for both
position and velocity, in which only position observations are required for statistical
inference of model parameters. All advantages of maximum likelihood estimation are
preserved in this formulation, which we illustrate numerically.

2.1. The Langevin Equation & Quadrature Solution. The scalar Langevin
equation for a diffusing particle with velocity v is

m
dv

dt
= −ξv +

√
2kBTξf(t), (2.1)

where m is the particle mass, ξ is the friction coefficient is given by the Stokes drag
law, and kBT is the Boltzmann constant times the absolute temperature. The friction
coefficient ξ = 6πaη, where a is the radius of the particle and η is the viscosity of the
fluid. The stochastic term f(t) is taken to be Gaussian white noise with zero mean
and covariance

〈f(t)f(s)〉 = δ(t− s). (2.2)
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Mathematically, Eq. (2.1) represents a 2-parameter linear stochastic differential equa-
tion (SDE), written equivalently in the standard form of an Ornstein-Uhlenbeck pro-
cess:

dv(t)
dt

= −αv(t) + σf(t), (2.3)

where the 2 parameters in the process are

(α, σ) = (ξ/m,
√

2kBTξ/m2). (2.4)

Ornstein-Uhlenbeck processes have several important properties– Markovian, sta-
tionary (given an appropriate initial condition), and Gaussian–that are amenable to
mathematical and statistical analysis.

• If the initial velocity v(0) is normally distributed with mean zero and variance
σ2/(2α),

v(0) ∼ N
(

0,
σ2

2α

)
, (2.5)

then v(t) has the same distribution for all t, and the velocity autocorrelation
function is given by

< v(t)v(s) >=
σ2

2α
e−α|t−s|. (2.6)

• An Ornstein-Uhlenbeck process can be written in terms of a stochastic inte-
gral:

v(t) = e−αtv(0) + σ

∫ t

0

e−α(t−s)f(s)ds, (2.7)

which is a quadrature solution to the SDE (2.3).
• This representation is useful, as shown below, for developing efficient statis-

tical techniques for estimating the parameters α and σ from time series data
sampled on finite intervals.

• From the exact solution, the tracer position x(t) is given by:

x(t) = x0 +
∫ t

0

v(s)ds, (2.8)

where x0 = x(t = 0). The variance of the tracer position (mean square
displacement, MSD) is likewise explicit [3]:

〈[x(t)− x(0)]2〉 =
2kBT

αm

[
t− 1

α
(1− e−αt)

]
. (2.9)

Next we introduce and apply statistical methods that take advantage of the Gaus-
sian evolution and integrability of the Langevin equation to recover α and σ from time
series data. These features will be shown in subsequent sections to carry over to the
generalized Langevin equation, and thereby to inversion of viscoelastic parameters
from tracer time series data.
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2.2. Autoregressive Processes & Exact Discrete Langevin Equations.
Suppose we want to match Brownian tracer experimental data with a discrete model
of the Langevin equation (2.3), where the discrete time step ∆ has to be sufficiently
small to resolve the underlying stochastic process. The velocity of a particle diffus-
ing in a viscous fluid can be modeled by discretizing equation (2.3) using an Euler
approximation, which yields

vn − vn−1 ≈ −αvn−1∆ + σ
√

∆εn, (2.10)

where εn is a sequence of independent, standard normal random variables and vn =
v(n∆). Rearranging the above equation yields

vn ≈ (1− α∆)vn−1 + σ
√

∆εn. (2.11)

With this discretization, vn is a first-order autoregressive (AR) process. An AR
process is one in which the current observation is a weighted sum of the previous
observations plus a noise term that is independent of previous noise terms. Alter-
natively, we can exploit the quadrature solution (2.7) and replace the approximate
discretization by the exact discrete Langevin process,

vn = e−α∆vn−1 + εn, (2.12)

where εn, n = 1, ..., N is a sequence of independent standard Gaussian random vari-
ables with variance

s(α, σ) = σ2 1− e−2α∆

2α
. (2.13)

The Euler approximation is recovered as a first-order Taylor series expansion of the
coefficients in this exact discretization. The advantages of this exact discretization are
that one can accurately generate sample paths, and furthermore, the time series are
guaranteed to be statistically consistent with the process (which might be otherwise
polluted by cumulative errors in a numerical integration scheme). We will apply this
discrete process to simulate an experiment, from which experimental time series are
extracted by sampling the full data set.

2.3. Maximum Likelihood Methods for Parameter Inversion. We turn
now to maximum likelihood methods which give a general framework to obtain point
estimators and standard errors for the model parameters, α and σ, given a time series
v0, v1, ..., vN . The likelihood function is computed from the joint probability density
for an observed velocity time series. Noting that the time series is Markov, that the
conditional distribution of vn given vn−1 is normal with mean e−α∆vn−1 and variance
(2.13), and assuming that the initial velocity v0 is known, the likelihood function is
given by

L(α, σ) = g(v1, ..., vN |v0, α, σ)

=
N∏

n=1

h(vn|vn−1, v0, α, σ)

= (2πs(α, σ))−n/2 exp

(
−

N∑
n=1

(
vn − e−α∆vn−1

2s(α, σ)

)2
)

,
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where g(·|v0, α, σ) is the joint density of v1, ..., vN and h(·|·, v0, α, σ) is the transition
density for the process. Given a sequence of velocity measurements, the likelihood
function is numerically maximized to obtain estimates, α̂ and σ̂, for α and σ. Hereafter
in the paper, parameter estimates are denoted by ·̂.

One of the benefits of maximum likelihood estimation is that under fairly general
conditions to be given in the Appendix, asymptotic probability distributions for these
estimators may be obtained. Note that while α is not random, α̂ depends on the
random time series v0, ..., vN and is a random variable; given a new time series one
obtains a new realization of the random variable. In the present context, we know a
priori that the estimator α̂ is asymptotically (for long time series, i.e. large number
of observations N) normal with mean equal to the true parameter α and variance of
α̂ equal to 1/N(−∂2

α log L(α, σ))−1. We obtain an estimate for the variance of α̂ by
numerically calculating the derivative of the log likelihood function at the maximized
value.

We emphasize that model parameters may be estimated from a single time series
of the process; this will be illustrated in the proof-of-principle illustrations below. If
that single particle path is sufficiently long, then the Mason-Weitz approach and our
approach should be consistent (a final example addresses this point). If multiple paths
are available and they are presumed to be independent, the overall likelihood function
will be defined as the product of likelihood functions for the individual paths, and
maximum likelihood estimators may be obtained as before including the additional
observations. This methodology will be valid assuming statistical independence of
the paths. The methods introduced here can be applied even if the data set is not
large; this corresponds either to a large ∆ or a low number of iterations in the dis-
crete process. We will return to this issue below in a discussion of over- and under-
resolution of the underlying stochastic process, and in comparisons of quality of fits
versus number of observations.

2.4. Extension to the Full System of Position & Velocity. In general,
microrheology experiments measure the position of the particle, not the velocity. It is
of course unwise to approximate the velocity by differencing the experimental data;
information is lost and unnecessary errors are introduced. Alternatively, we formulate
a vector Langevin model for the position and velocity of the particle, and then de-
velop maximum likelihood methods assuming only partial observations of the process
variables. Specifically, we can observe x0, x1, .., xn but cannot observe v0, v1, ..., vn.
The system can be written in vector form as

d

dt
Y (t) = AY + Kf(t), (2.14)

where

Y =
(

x(t)
v(t)

)
, A =

(
0 1
0 −α

)
,K =

(
0
σ

)
, (2.15)

and f(t) is a scalar Gaussian white noise process defined above. The quadrature
solution to Eq. (2.14) is [15]

Y (t) = eAtY (0) +
∫ t

0

eA(t−s)Kf(s)ds. (2.16)

As noted above, special properties of the exact solution can be exploited when
performing parameter estimation. The process is Gaussian and therefore uniquely
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defined by its mean and covariance. So, given an initial condition Y0 = Y (0) and
a time increment ∆, we can determine the exact distribution of Y1 = Y (∆) and by
iteration define a vector AR process, as in (2.12) above.

Conditioning on Yn−1, the distribution of Yn is Gaussian with mean eA∆Yn−1

and covariance matrix [8, 15]

S(∆) =
∫ ∆

0

eA(∆−s)KKT eAT (∆−s)ds. (2.17)

Furthermore, it is straightforward to generate exact realizations of the stochastic
process at finite time intervals, with the caveat that one must be able to accurately
calculate S. (For A, K in (2.15), this is trivial; for the generalized Langevin equation
of viscoelastic fluids, we address this issue in Section 3.1). For a particle starting in
state Y0, we generate a Gaussian vector εn with covariance matrix S and add this to
eA∆Y0 to obtain Y1, and then simply iterate this procedure. That is,

Yn = eA∆Yn−1 + εn, (2.18)

where εn is an independent sequence of zero mean Gaussian random vectors with
covariance S. Thus, we have an autoregressive (AR) representation for the vector
process Y0, ..., YN associated with the scalar process (2.12).

2.5. The Likelihood Function for Position Measurements. Now that we
have cast the Langevin model in the form of a vector AR process, we are in position to
calculate the appropriate likelihood function for estimating parameters, given a time
series of particle positions x0, x1, ..., xN . In this section, we outline key steps in the
derivation of the likelihood function, leaving a detailed derivation for the Appendix.
The derivation relies on the Kalman filter, which was developed to estimate the current
state of a dynamical system from noisy time series data of partial observations of the
process. (This use of the Kalman filter as a method to calculate the likelihood function
has become standard and further discussion can be found in [2] and [8].) Recall
discrete observations generated from the Langevin equation satisfy (2.18), where the
noise has a covariance structure given by (2.17). Experimentally, only the position of
the particle is observed, and no other components of the vector Y . That is, at the
nth time interval the observable is

xn = CYn, C =
(

1 0
)

(2.19)

Assuming that the model parameters, Θ, are known, a Kalman filter is generally used
to recursively estimate the current state, Yn, given the observations x1, ..., xn. Using
this and the AR structure of the process, we may also give a predictive density for
Yn+1 given x1, ..., xn. From this we may obtain the density of xn+1 given x1, ..., xn

which we denote by h(xn+1|xm,m < n + 1,Θ, x0). We may then decompose the joint
density for the time series into a product of these conditional densities and obtain

g(x1, x2, ..., xN |Θ, x0) =
N∏

n=2

h(xn|xm,m < n,Θ, x0). (2.20)

Because the process is Gaussian, the above equation can be rewritten as

− log L(Θ) = − log g(x1, x2, ..., xN |Θ, x0)

=
1
2

N∑
n=1

(
log2π + log Qn−1 +

(xn − x̂n|n−1)2

Qn−1

)
, (2.21)
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where the conditional mean and variance of xn given x1, ..., xn−1 are

x̂n|n−1 = CeA∆Ŷn−1 (2.22)

and

Qn−1 = CRn−1C
t, (2.23)

respectively, and the matrix Rn is defined in the Appendix. Therefore, once we have
x0, x1, ..., xN we may numerically maximize this likelihood function with respect to
the parameters to obtain an estimate for Θ. An important feature of this Kalman
derivation of the likelihood function is that it may be calculated recursively; this
dramatically reduces the time necessary to calculate the likelihood function since we
do not have to calculate the full covariance matrix of the entire time series.Use of
the Kalman filter to calculate the likelihood function of dependent data is a common
procedure in time series analysis and is the most accurate and efficient method to
calculate the likelihood function for a number of common models such as the ARIMA
model [6, 18].

This method requires numerical calculation of the matrices S and eA∆, but this
calculation only has to be done once for each trial parameter set in the maximization
process. This numerical calculation is, of course, trivial for 2×2 systems, but presents
a potential limitation for the GLE, which we will soon formulate in this precise vector
AR setting, and where the matrix size scales with the number of exponential modes.
Below, we overcome this potential limitation due to the special form of the matrices
that arise for GLEs with exponential kernels.

As with the univariate case, there are asymptotic results for the distribution of
our maximum likelihood estimators Θ̂. Under certain reasonable conditions given
in the Appendix, Θ̂ is asymptotically normal with mean Θ and covariance given by
cov(Θ̂) = 1/N(−∇ log L(Θ))−1 which may be approximated by numerical evaluation
of the quantity 1/N(−∇2 log L(Θ̂))−1. Thus, to build a 1− α confidence interval for
θm, we start with

P (−zα/2 ≤
Θ̂m − θm

cov(Θ̂)m,m

≤ zα/2) ≈ 1− α, (2.24)

where zα/2 is the value that satisfies P (Z > zα/2) = α/2 and Z is a standard Gaussian
random variable. We use the notation Am,n to denote the element in the mth row
and nth column of the matrix A. Some algebra yields

θm ∈ (Θ̂m − zα/2cov(Θ̂)m,m, Θ̂m + zα/2cov(Θ̂)m,m) (2.25)

which is the desired confidence interval for θm.

2.6. The Autocorrelation Function (ACF). A common diagnostic tool for
determining important time scales in time series data is the discrete autocorrelation
function. This function represents a scaled and discretized estimate of the true auto-
covariance function

Cov (U(t)U(s)) = 〈U(t)U(s)〉 − 〈U(t)〉〈U(s)〉. (2.26)

For a discrete time series U1, ..., UN , where Uk = U(k∆) and the data is normalized
to have mean zero, the discrete autocorrelation function is defined to be

ACF (j) =

∑N
n=j+1 UnUn−j∑N

n=1 U2
n

.
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From now on the acronym ACF denotes the discrete autocorrelation function unless
explicitly stated otherwise. Note that for zero time lag, the ACF is normalized to one.
A general guide for verifying that a process is white noise (independent identically
distributed sequence of random variables) is that for all lags greater than or equal to
one the ACF will be less than 2/

√
N where N is the number of observations [19]. We

illustrate the application of the ACF diagnostic in examples below.

2.7. Illustration of the Statistical Toolkit. We present a simple example,
Brownian diffusion and simple Langevin dynamics, to show how these methods work
and test their accuracy. The example illustrates the importance of the experimental
sampling time relative to the physical timescales in the model. We always assume (and
enforce in numerical simulations) that the discrete time step ∆ in the direct simulation
of sample paths is small enough to resolve the stochastic fluctuation timescales in the
model. This yields a faithful resolution of the physical process from which we can
then sample the resolved data on any coarse timescale, analogous to an experimental
sampling time. With these protocols, we are able to provide measures and indicators
of experimental over- and under-sampling.

Throughout the paper, we measure time in milliseconds (ms), mass in milligrams
(mg), and length in microns (µm). Consider a neutrally buoyant particle of diameter
1 µm and mass 5 × 10−10mg moving in a fluid with viscosity 1.5 Pa-s (similar to
glycerol). This corresponds to α = 26 × 106(ms)−1 and σ = 65(ms)−3/2. First, we
simulate the exact discrete Langevin process (2.17), (2.18) for a highly resolved time
step ∆ = 10−10ms, which is 3 orders of magnitude smaller than the viscous timescale
set by the drag coefficient, α−1 = m/ζ ≈ 0.37 × 10−7ms. We generate one sample
path with 105 data points. The examples to follow will strobe this data set at the
prescribed lag ∆; if ∆ is 10−10+δ, then each observation corresponds to 10δ numerical
time steps.

The ACF is first computed using a coarse sampling time ∆ = 5× 10−7ms, which
is 13.4 times the viscous time scale α−1. The process yields the ACF signature of
white noise, Fig. 2.1A. That is, the ACF nearly approximates a delta distribution
versus lag with most of the weight at zero lag time, and therefore at this sampling
interval the process appears to be white noise. On the other hand, if the sampling
interval is shortened (∆ = 10−8ms) so that it is consistent with the viscous timescale,
then the ACF falls off exponentially as in Fig. 2.1B.

Next, we use maximum likelihood methods to generate the estimators α̂ and σ̂
for five decades of lags ∆ (Figure 2.2). Note the estimator (open circles) is most
accurate and the variance (vertical bars) is minimized when the lag time ∆ ≈ 10−8

—10−9ms, consistent with the ACF diagnostic (Figure 2.1B) showing exponential
decay. Note further that the estimator α̂ degrades as ∆ increases, and the variance
grows, consistent with the ACF of Figure 2.1A for coarse sampling. For ∆ very small,
e.g. ∆ = 10−10ms, the variance of α again grows, but the estimator remains quite
accurate.

This simple example illustrates a method for choosing an appropriate time interval
for sampling. If the observations are too far apart (“under-resolved”), e.g., ∆ =
10−7ms, then the autocovariance of the velocity is near zero after one time step.
Indeed, one can compute the AR matrix

eA∆ =
(

1 1−e−α∆

α
0 e−α∆

)
∆=10−7

≈
(

1 3.7·10−8

0 1.5·10−6

)
. (2.27)

Looking at the discrete process (2.18) and (2.17), there is little information carried
10



Fig. 2.1. Autocorrelation function (ACF) of Langevin equation velocity time series: The ACF
of the velocity at two different sampling intervals, one showing under-resolution and the other indi-
cating accurate resolution.
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over except the previous position, so the process is nearly a discrete white noise pro-
cess. Nonetheless, the time series approaches can often still give reasonable estimates
of the parameters, as shown in Figure 2.2. By contrast, a reasonable sampling time,
like ∆ ∼ 10−8ms, will reflect an exponential ACF, signalling good resolution of the
process. In the extremely improbable situation where observations are too frequent
(“over-resolved”), e.g. ∆ = 10−10ms, then the AR matrix will be close to the identity,

eA∆ ∆=10−10

≈
(

1 9.9·10−5

0 9.9·10−1

)
,

and the velocity will appear to be non-stationary with a linear decay in the ACF.
These signatures of the ACF are tools that can be used with experimental data to
identify an appropriate sampling time, and even to estimate the smallest physical
timescale in the underlying process.

3. The Generalized Langevin Equation & Statistical Methods.

3.1. Mathematical Framework: Quadrature Solution for Exponential
Series Kernels. The starting point for modeling the diffusive properties of micro-
scopic Brownian particles in viscoelastic materials is the generalized Langevin equa-
tion (GLE) [12]:

m
dV (t)

dt
= −

∫ t

0

ϕ(t− τ)V (τ)dτ + F̃ (t). (3.1)

For passive microrheology, F̃ (t) is an entropic stochastic force, assumed to be a Gaus-
sian colored noise, correlated with the memory kernel ϕ(t) through the fluctuation-

11



Fig. 2.2. Parameter estimates versus sampling time ∆ of the drag α and noise σ for the
Langevin model. The bands represent 95% confidence intervals for the estimates. The true parameter
is represented by a horizontal line.
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dissipation relation,

〈F̃ (t), F̃ (s)〉 = kBTϕ(t− s), t > s. (3.2)

For simplicity, we divide both sides of (3.1) by m and redefine the memory kernel
appropriately to obtain

dV (t)
dt

= −
∫ t

0

ξ(t− τ)V (τ)dτ +

√
kBT

m
F (t), (3.3)

with

〈F (t), F (s)〉 = ξ(t− s), t > s. (3.4)

Throughout the remainder of the paper when we refer to the memory kernel, we will
mean ξ(·), which is scaled by 1/m.

In this section, we show that for a certain class of memory kernels, specifically a
sum of exponentials, the generalized Langevin equation can be expressed as a set of
coupled linear SDEs of the same form as (2.14), in which the velocity and position
are the first two components. Therefore, all Langevin equation properties and tech-
niques carry over immediately to the GLE. In particular, we can: 1) apply maximum
likelihood methods for parameter estimation; 2) exactly simulate the stochastic pro-
cess instead of low-order numerical integration; and 3) write down explicit formulas
for statistical quantities of interest, such as autocorrelation functions for position and
velocity.
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Suppose the memory kernel is a single exponential,

ξ(t) = ce−
t
λ , c =

6πaG

m
, (3.5)

where a and m are the particle radius and mass, and the factor 6πG is used to make
contact with the viscous limit. (This is the same scaling used for linear viscoelasticity
where the exponential kernel corresponds to a single-mode Maxwell fluid with shear
modulus G, relaxation time λ, and zero strain rate viscosity η0 = λG. The viscous
limit corresponds to λ → 0.) The noise F (t), (3.3-3.4), for the single exponential
kernel can be expressed as an Ornstein-Uhlenbeck process,

dF (t)
dt

= − 1
λ

F (t) +

√
2c

λ
f(t), (3.6)

where f(t) is white noise. Note that the Langevin equation for viscous diffusion is
obtained in the limit λ → 0, that is, (3.6) becomes (with ξ0 = 6πaη0)

F (t) =

√
2ξ0

m
f(t). (3.7)

Analogous to the scalar Ornstein-Uhlenbeck process (2.3), the system (3.3-3.6)
may be solved explicitly. To see this, define the variable Z(t) by

Z(t) =
∫ t

0

e−
t−τ

λ V (τ)dτ, (3.8)

which yields

dZ(t)
dt

= − 1
λ

Z(t) + V (t). (3.9)

Now, the full system can be written in matrix form as

d

dt
Y (t) = AY (t) + KW (t) (3.10a)

with

A =


0 1 0 0

0 0 −c
√

kBT
m

0 1 − 1
λ 0

0 0 0 − 1
λ

 , K =


0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
√

2c
λ

 (3.10b)

Y (t) = (X(t), V (t), Z(t), F (t))T , (3.10c)

and W (t) is a vector of independent white noise processes.
This system (3.10a)-(3.10c) is identical in form to (2.14), and therefore another

vector Langevin equation, whose quadrature solution is given by (2.16) and (2.17)
with these Y , A and K. Following the Langevin example above, we can now generate
the corresponding viscoelastic AR process for a Brownian particle with this specified
memory kernel, starting from Y0 = Y (0).

13



More generally, suppose the memory kernel ξM (t) is given by an M -mode expo-
nential series:

ξM (t) = c1e
− t

λ1 + c2e
− t

λ2 + ... + cMe
− t

λM , (3.11)

where ci = 6πaGi/m. Similarly, the total noise FM (t) can be written as

FM (t) = F1(t) + F2(t) + ... + FM (t), (3.12)

where each Fi(t) is an independent Ornstein-Uhlenbeck process characterized by the
ith relaxation time λi. That is,

dFi(t)
dt

= − 1
λi

Fi(t) +
√

2ci

λi
fi(t), (3.13)

where fi(t), i = 1, ...,M are independent white noise processes.
Therefore, FM (t) is a mean-zero Gaussian process with covariance consistent with

the fluctuation-dissipation theorem,

< FM (t)FM (s) >= c1e
− t−s

λ1 + c2e
− t−s

λ2 + ... + cMe
− t−s

λM . (3.14)

This formulation of the GLE yields once again a vector Langevin process of the form
(36), with the following definitions for Y , A and K:

Y =

0BBBBBBBBB@

X(t)
V (t)
Z1(t)

...
ZM (t)
F1(t)

...
FM (t)

1CCCCCCCCCA
,A =

0BBBBBBBBBB@

0 0 1 ... 0 0 ... 0

0 0 −c1 ... −cM

q
kBT

m
...

q
kBT

m

0 1 −1/λ1 ... 0 0 ... 0
... ... ... ... ... ... ... ...
0 1 0 ... −1/λM 0 ... 0
0 0 0 ... 0 −1/λ1 ... 0
... ... ... ... ... ... ... ...
0 0 0 ... 0 0 ... −1/λM

1CCCCCCCCCCA
,

K =

0BBBBBBBBBBB@

0 0 ... 0 0 0 ... 0
0 0 ... 0 0 0 ... 0
0 0 ... 0 0 0 ... 0
... ... ... ... ... ... ... ...
0 0 ... 0 0 0 ... 0

0 0 ... 0 0
q

2c1
λ1

... 0

... ... ... ... ... ... ... ...

0 0 ... 0 0 0 ...
q

2cM
λM

1CCCCCCCCCCCA

(3.15)

Again, an exact solution of this system is given in the form (2.16) and (2.17)
with these matrix formulas. Thus, all properties of the Langevin equation have been
extended to the GLE for the class of M -mode exponential series kernels. Likewise, the
machinery from Section 2 applies for generating direct realizations of GLE processes
and performing statistical analysis of time series for partial observations (of position).

These formulas are valuable to the extent we can numerically calculate the matrix
exponential eA. The special form of A, equation (3.15), lends itself to an explicit
and straightforward determination of the eigenvalues and eigenvectors, for any mode
number M . Furthermore, this calculation only has to be done once, both to generate
the direct process (or statistics of the process), and to perform parameter inversion
for each M mode model. The procedures of computing the spectrum and then the
covariance matrix are given in the Appendix.
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3.2. GLE direct and inverse illustration with a single exponential ker-
nel. We first illustrate the GLE direct and inverse strategy, analogous to the Langevin
illustration in Section 2, for the simplest case: a 1-mode exponential kernel (3.5) for
which the GLE is given by (3.10a-3.10c). We select physical parameter values as fol-
lows: λ1 = 1.546ms, G1 = 1.035×10−5mg/ms2µm. The model parameter c1 then has
the value c1 = 4.440×10−3ms−2. Data are generated by a direct simulation with time
step ∆ ms; we explore various sampling intervals relative to λ to identify signatures
of over-, under-, and “good” sampling times in the ACF and the estimators (λ̂1,ĉ1).
For each ∆, we generate a single sample path consisting of 5× 104 observations, or a
total experimental simulation of 5× 104∆ ms.

We begin with the effect of sampling interval ∆ on the ACF for velocity, as shown
in Figure 3.1. The data for bead velocity were created by differencing the position
data for a sample path of length 50,000. The first plot in Figure 3.1 corresponds to
a very long sampling interval (6 times the relaxation time λ1), and shows that the
velocities at consecutive time steps are nearly independent of one another. We can
see this by analyzing the matrix eA∆, and we notice

vn+1 ≈ 0.036vn + ε, (3.16)

where ε is white noise, which explains why the ACF of velocity approximates white
noise. The second plot shows a more reasonable ACF at a sampling interval ∆ =
0.5ms. The last ACF plot in Figure 3 corresponds to a very fast sampling interval ∆ =
0.01ms. Note that for this sampling rate, the ACF appears to fall off linearly, rather
than exponentially as expected, indicative of a process that has been oversampled.
This behavior is similar to the Langevin equation, where very short time steps yields
a strong dependence from one velocity to the next. Recall that this scenario yields a
likelihood function that is relatively insensitive to parameter values.

Figure 3.2 shows the maximum likelihood estimate λ̂1 of a single relaxation time,
λ1, from numerically generated data and demonstrates the effect of the sampling
interval on the estimation of λ1, the relaxation time. The horizontal line represents
the true value of λ1 while the error bars represent 95% confidence intervals which
are symmetric about the estimate represented by open circles. As with the ordinary
Langevin case, there is an optimal sampling interval. Note that the natural time scale
for this parameter is on the order of milliseconds; this is approximately the sampling
interval at which the minimum variance of the estimator is obtained.

It is important to note here that for each sampling rate, the number of discrete
observations used for inference is being held constant. This implies that the real time
interval over which the observations are being taken is much shorter for the faster
sampling rates and considerable longer for the slowest sampling rates. This shorter
real time interval could partially explain the large variance of the estimator at these
faster rates. However, one should also note that the observations taken at longer than
optimal sampling intervals occur over a longer real time interval and yet also perform
poorly. This demonstrates that both sampling rate and number of observations play
a role in the performance of the method, which is worthy of further investigation.

In Figure 3.3, the estimate ĉ1 of the model parameter c1 versus sampling interval
∆ is illustrated. As seen when estimating λ1, the estimates improve as the sampling
interval becomes longer. However, beyond the interval of ∆ values in this plot the
quality of the estimator declines quickly. Note that this parameter has a natural time
scale of 1/

√
c1 which is approximately 10−

3
2 ms. Note also that there is little overlap

between the very good estimates of c1 and the good estimates of λ1. This points
15



Fig. 3.1. ACF versus sampling interval ∆ for a GLE with single-mode exponential kernel with
relaxation timescale λ1 ∼ 1.5ms. a. Under-resolved with ∆ ∼ 6λ1. b. Resolved with ∆ ∼ .3λ1. c.
Over-resolved with ∆ ∼ .01λ1.
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Fig. 3.2. Estimators of the relaxation time λ̂1 versus sampling resolution ∆, with data taken
from a direct discrete GLE simulation with a 1-mode exponential memory kernel. The exact value
λ1 = 1.546ms, is denoted by the horizontal line. The hollow circle indicates the value of the
estimator, and the error bars indicate 95% confidence intervals.
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to a general problem for a system with different relevant time scales. The quality of
relative estimates within a parameter set will be partially determined by the sampling
interval.

Fig. 3.3. Effect of sampling resolution ∆ on estimation of c1 for the 1-mode GLE example in
Figures 3.1, 3.2. The horizontal line represents the true value of c1 = 1.109 × 103ms−2 while the
error bars represent 95% confidence intervals, which are symmetric about the estimates represented
by a hollow point.
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In Figure 3.4, we show the effect of the number of experimental observations on
parameter estimation. Parameter estimates improve with the length of the time series
for a given sampling time. This is a general feature of maximum likelihood estimators,
and its theoretical verification is given in the Appendix B as a consequence of the
asymptotic normality of the estimators.

With a single-mode exponential kernel, the quadrature solution of the GLE can be
extended to an explicit formula for ensemble averages, in particular, for autocorrela-
tions of velocity and displacement (cf. [7]). We drop the subscript 1 on all parameters
for these one-mode formulas. The velocity autocorrelation is given by

〈v(t)v(t′)〉 =
kBT

mβ(1− β)
e−

1−β
2λ |t−t′| − kBT

mβ(1 + β)
e−

1+β
2λ |t−t′|, (3.17)

while the mean squared displacement (MSD) is:

〈[x(t)− x(t′)]2〉 =
4kBT

m

{ 2λ

1− β2
|t− t′| − 2λ2(3 + β2)

(1− β2)2

+
λ2

β(1− β2)2
(
e−

1−β
2λ |t−t′|(1 + β)3 − e−

1+β
2λ |t−t′|(1− β)3

)}
,

(3.18)

where β =
√

1− 4cλ2 and c = 6πaG/m from (3.5). For sufficiently short times, the
MSD (3.18) exhibits ballistic behavior, 〈[x(t)−x(0)]2〉 ≈ kBTt2/m, and for sufficiently
long times, diffusive scaling emerges, 〈[x(t)−x(0)]2〉 ≈ 2kBTt/mλc. For intermediate
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Fig. 3.4. Parameter estimation as a function of the number of observations for the 1-mode
GLE of Figures 3.1-3.3. The sampling interval is fixed, ∆ = 0.1ms, which is a good sampling rate
to estimate λ1 = 1.5ms as shown in Figure 3.2. The horizontal line represents the true value of
λ1, and the error bars represent 95% confidence intervals which are symmetric about the estimates
represented by a hollow point.
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times, a power law fit of the MSD yields a range of exponents depending on the
window in which one chooses to fit.

We note the parameter β can be purely imaginary, as pointed out in [7], which
is clear from the formula (3.18). Oscillations are predicted in the velocity correlation
and MSD whenever physical parameters obey 4cλ2 > 1. When extended to the more
general case of multiple exponentials, similar oscillations appear since the relevant
matrix A often has a pair of complex eigenvalues.

This GLE model phenomenon predicts high frequency (short time) oscillations
in experimental path data, even after ensemble averaging of path time series, which
translates to a source of high frequency error of MSD in experimental measurements
because of the phase mismatch between these inherent oscillations and experimental
sampling time. We do not know if this property is generic for a wider class of kernels.

3.3. GLE model illustration with a 4-Mode Rouse kernel. A classical
model due to Rouse (cf. [5]) yields a special class of M -mode kernels for which
GLE diffusive transport properties are explicitly solvable. A 4-mode Rouse kernel is
implemented now to further illustrate the direct and inverse tools, and to benchmark
our direct simulations against exact MSD scaling laws. To construct a Rouse kernel,
polymer chains are divided into spherical mass segments connected by linear springs
of equilibrium length b (beads in polymer chain); and a kernel function of a series
of exponentials with same weight and different characteristic time is then followed[4,
17]. A Zimm kernel, in which a different exponential spectra is derived, is presented
next. More complex molecular models may incorporate overlap and entanglements of
polymer chains, or even chemical interactions between Brownian particles and local
environment. Our focus in this paper is to model the fluctuations without attempting
to dissect the various sources. Our goals in this example are once again: for inversion,
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to find the best GLE kernel to fit measured path data; for direct prediction, to simulate
particle paths or the statistics of paths for a known prescribed GLE kernel.

To prescribe the kernel for a Rouse chain solution, each segment in a polymer
chain is assigned friction coefficient ξb; and the weight and characteristic times for
the exponentials of the ith mode are given by (with Nm the number of segments in a
polymer chain):

Gi = G0 = νkBT, λi =
ξb

16kBTβ2
b sin2(iπ/2(Nm + 1))

, (3.19)

where ν is the number density of polymer chains and βb = 3/(Nmb2). In the example
to follow, we choose ν = 2%. We now specify all parameter values in the 4-mode
Rouse-GLE model. The passive tracer bead is 1µm in diameter of mass m = 1.05×
10−9mg. The single weight factor is given by G0 = G = 1.035 × 10−5mg/ms2µm,
so that our rescaled parameters are c = ci = 6πaG0/m = 4.440 × 10−4(ms)−2. The
Rouse relaxation times are, from (3.19): λ1 = .02415, λ2 = .04294, λ3 = 0.09661,
and λ4 = .38643 in units of ms. Figure 3.5 shows a typical time series for particle
position for this GLE-Rouse kernel, extracted from the full vector AR simulation.
For comparison, we have included a sample path for a random walk with independent
steps. The variance of the steps for both time series are the same; therefore, the figure
gives a clear illustration of the effect of dependency alone in suppressing the diffusion
of a particle.

Fig. 3.5. Sample discrete AR simulation for a GLE with a 4-mode Rouse kernel (top path)
compared to a Brownian motion (Langevin equation path) with the same local variance.

Time (10−2ms)

P
os

iti
on

 (
10

−4
µm

)

0 100 200 300 400 500

−
20

00
0

20
00

40
00

60
00

We simulate 200 paths with sampling time ∆ = 10−3ms for 104 steps. Figure 3.6
shows the autocorrelation function (MSD) for the position of the paths, computed by
ensemble averaging of the 200 paths (green dots). This result is compared with the
analytical scaling law (yellow dashed curve) for a Rouse chain [4, 17]. (Later in this
section, we present a more general result from vector Langevin stochastic processes:
an explicit quadrature formula for the autocorrelation matrix of the vector Langevin
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process. This formula allows one to bypass single paths and ensemble averaging of
them to directly simulate MSD and velocity autocorrelations.) Note the MSD starts
out with ballistic scaling for times far below the shortest relaxation time, and eventu-
ally becomes diffusive for times longer than the largest relaxation time. Subdiffusive
scaling occurs between the shortest (t = 0.02415ms) and longest (t = 0.38643ms)
relaxation times, consistent with Rouse behavior.

Fig. 3.6. MSD of GLE sample paths for a 4-mode Rouse diffusive transport modulus. 200 paths
are generated for a 1 µm diameter bead at 293K. The Rouse relaxation times are λ1 = .02415,
λ2 = .04294, λ3 = 0.09661, and λ4 = .38643 in units of ms, with equal weights for each mode,
G0 = 1.035 × 10−5mg/ms2µm. To benchmark analytical scaling laws, a linear fit between the two
vertical blue dashed lines (from the shortest to longest relaxation times) confirms the MSD power
law of 0.5 for the Rouse model. The short-term ballistic and long-term diffusive scaling are also
confirmed.
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Now we turn to the application of inverse methods for the path data, treating
the data as though it were generated experimentally. To reveal the effective memory
in this system, we first “preprocess” one sample time series to get an estimate of the
ACF for velocity, which is obtained by differencing the position data. We use this
proxy for the ACF of velocity to obtain initial conditions for the maximum likelihood
method of fitting memory kernels. The ACF result is shown in Fig. 3.7. Note the
oscillatory behavior of the ACF, clearly indicating that the process is not consistent
with a particle diffusing in a purely viscous fluid. (This remark relates to the earlier
analysis of oscillations that arise in 1-mode GLE models, which persist for this Rouse
kernel.)

The ACF in this context is being used as an exploratory tool to gauge the amount
of dependency present in the data before using the maximum likelihood techniques to
fit the model. The ACF gives a proxy here for the longest relaxation time seen in the
data which gives an initial guess for the one mode model. If no significant lags were
seen, then it is likely that all relaxation times are below the sampling rate and more
frequent observations are necessary to estimate relaxation times. If the researcher
suspects well-separated relaxation times over several orders of magnitude, then one
could use more coarsely sampled data to fit the longest times and after fitting use
a finer grid to fit shorter relaxation times. The ACF can be used to guide these
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Fig. 3.7. ACF for velocity approximated by differencing of position data for the discrete AR
process corresponding to a GLE with the 4-mode Rouse kernel of Figure 3.6.
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explorations of widely separated times.
In general, the number of exponential modes that best fit the underlying process

that generated the data is not known. The strategy begins by positing a single
exponential to fit the data, from which the ACF produces a rough guess of 0.04
ms for the relaxation time. Our experience with numerical and experimental data
indicates that fitting the data to a 1-mode kernel tends to be quite stable, and this
initial step consistently gives the same results independent of the initial guess for the
relaxation time. The estimated parameter values are λ̂1 = 5.519 ± 0.071(10−2ms)
and ĉ = 1.77± 0.003(10−3ms−2). Not surprisingly the estimated value of c is almost
exactly four times the true value since the data was generated from a four-mode model.
(Fitting a one-mode model is essentially the same as fitting a four-mode model where
all the modes have the same relaxation time, thus yielding a ĉ that is roughly four
times the true value.)

We would like to be able to assess the quality of the fits being performed. One
diagnostic tool for investigating how well the model predicts the data is the ACF of
the residuals. This is shown in Fig. 3.8. If the model has successfully captured all the
dependencies in the data, then we expect the ACF of the residuals to be consistent
with white noise. Note that the first few lags show a significant negative correlation,
indicating that the 1-mode model can not account for all the dependency in the data.

We proceed to a two-mode kernel which requires initial guesses for each relaxation
time. If λ̂1 is the estimate for the single mode case, one reasonable approach is to
use λ̂1 ± λ̂1/2 as the initial guesses for the two modes. In this way, each time we
add an additional mode to the model, we split the longest relaxation time and use
the estimates obtained from fitting the previous model as an initial guess for the
remaining relaxation spectra. That is, for an M -mode model, our initial guesses for
the λ’s will consist of the (λ̂1, ..., λ̂M−2) obtained by fitting an M −1 model, and
for the two longest relaxation times we use λM−1 = λ̂M−1 − (λ̂M−1 − λ̂M−2)/2 and
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λM = λ̂M−1 + (λ̂M−1 − λ̂M−2)/2. Therefore, for the two-mode model, we choose
initial conditions of 0.0275ms and 0.0825ms for the λ’s and use ĉ from the one mode
model as the initial condition for c. This produces λ̂1 = 3.023 ± 0.043(10−2ms) and
λ̂2 = 19.30±0.73(10−2ms) and ĉ = 0.886±0.001(10−3ms−2). In this case the estimate
for c is roughly twice the true value.

The ACF for the residuals of the two-mode fit (not shown) indicates that we have
captured most of the dependencies in the data. Figure 3.9 shows a plot of the sum
of the squared residuals as a function of the number of modes used to fit the data.
Note there is a large reduction in the sum of the squared residuals in going from 1 to
2 modes, but there is no evidence of convergence yet.

We next fit a three-mode kernel. Using the method described above, the initial
guesses for the λ’s (in 10−2ms) are 3.023, 11.0, and 27.0. The estimated values for
the relaxation times are (in 10−2ms) λ̂1 = 2.525 ± 0.060, λ̂2 = 7.020 ± 0.461 and
λ̂3 = 25.50± 1.99, and the estimate of c is ĉ = 0.592± 0.001(10−3ms−2).

As expected, the estimated value of c is roughly 4/3 the true value. Note there
is still a significant drop in the sum of the squared residuals (Fig. 3.9). Figure 3.10
shows results for the estimated values of the relaxation times when a four-mode kernel
is used. For this case the initial guesses for the λ’s are (in 10−2ms) 2.525, 7.02, 16.0,
and 43.0. Notice that the true λ values all lie within the error bars. For c, we obtain
an estimate of 0.443622± 0.00074(10−3ms−2), which is very close to the true value.

Attempting to fit a five-mode kernel with initial guesses of λi = 2.322, 4.670, 10.47,
21.0, and 43.0 (in units of (10−2ms), we obtain estimates for the λs of 2.179, 3.748,
7.23, 14.947, and 33.897 (in 10−2ms). However, the estimated covariance matrix has
negative values on the diagonal indicating a problem with the maximization process.
There is also not a very large reduction in the sum of the squared residuals (Fig.
3.9), which means that the additional parameter does not meaningly contribute to
explaining the data.

While additional parameters will almost always lead to a decrease in the residual
sum of squares, it is clear in this case that the fit is unreliable since the approximated
covariance matrix is not positive definite. Therefore we conclude that four modes
provide an accurate representation of the data.

Next, we perform simulations to gauge the convergence of the parameter estimates
with increased data and to test the dependency of the fit to changes in the sampling
interval. Figure 3.11 shows the estimated values of λ3 and λ4 as a function of the
number of data points in the time series. (The fits for the other two relaxation times
are significantly better and omitted for clarity.) The convergence rate appears to be
on the order of n−1/2 consistent with the earlier derivation of the confidence interval.
Figure 3.12 shows the estimated values of λ3 and λ4 as functions of the sampling time
∆. The results are similar to those for the Langevin equation (Fig. 2.2). That is,
the method has difficulties estimating the relaxation times if too short or too long a
sampling time is used.

3.4. Direct GLE simulations of MSD and velocity autocorrelations. En-
semble average information for vector Langevin equations can be expressed in quadra-
ture form by the appropriate averaging of the exact quadrature formula for individual
paths. The full matrix of autocorrelations for a vector Ornstein-Uhlenbeck process is:

〈Y (t)Y T (t′)〉 =
∫ t

0

∫ t′

0

ds1ds2δ(s1−s2)eA(t−s1)KKT eAT (t′−s2). (3.20)
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Fig. 3.8. ACF of residuals for fitting a 1-mode GLE kernel to data generated from a discrete
AR process with a 4-mode kernel.
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Fig. 3.9. The sum of squared residuals when fitting kernels with 1-5 modes to 4-mode data.
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The (1,1) entry of the resulting matrix gives the MSD and the (2,2) entry gives the
velocity autocorrelation. The practical ramification of this formula is that one can
directly generate statistical properties for a known GLE M -mode diffusive transport
modulus without the need to generate sample paths and then take ensemble averages.
For the special case of a 1-mode exponential kernel, the integral representation can
be solved explicitly, which gives the result presented earlier (3.17), (3.18).

In Figure 3.6 for the four-mode Rouse kernel, the MSD is computed two ways:
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Fig. 3.10. Proof-of-principle: maximum likelihood recovery of a 4-mode Rouse relaxation
spectrum from numerical time series data. The error bars are symmetric about the estimate with
the open circles being the true values.
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Fig. 3.11. Parameter estimation versus sampling rate for the longest relaxation times λ3 and
λ4 in a 4-mode kernel. The error bars are symmetric about the estimate with the open circles being
the true values. The x-axis represents the log of ∆ (sampling time).
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from averaging of 200 sample paths generated from the GLE model and depicted by
blue circles; and then directly from the autocovariance formula (3.20) and depicted
by the yellow dashed line. Figure 3.6 convincingly reproduces the correct MSD power
law behavior of Rouse theory, namely an exponent of 1

2 when fitted over intermediate
times between the relaxation spectra. This comparison provides another benchmark
on the direct simulation tools, both for sample paths and for the autocovariance of
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Fig. 3.12. Parameter estimation versus number of observations (in units of 104) for the two
longest relaxation times λ3 and λ4 in a 4-mode kernel. The error bars are symmetric about the
estimate with the open circles being the true values.
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0.2885ms, the longest is 29.77ms; the two vertical lines mark the time span between them, over
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We now illustrate the methods are not “mode limited”, by running direct simu-
lations for beads of the same size and mass as in Figure 3.6, but with a GLE diffu-
sive transport modulus specified by a 22-mode Zimm kernel. The model posits 1100
monomers along each polymer chain, which we divide into 22 sub-units, which gives
22 modes and an explicit relaxation spectrum. Figure 3.13 shows the MSD statis-
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tics, again generated both by ensemble averaging of paths and by the autocorrelation
formula (3.20). The simulations predict a MSD power law scaling exponent of 0.62
when fitted between the shortest and longest relaxation spectra, which reasonably
approximates the 2

3 theoretical value of the Zimm model.

3.5. Comparison with the Mason-Weitz inverse method. The inverse
characterization framework for the memory kernel proposed in this paper focuses
on single path information in the time domain, which is a complement to the trans-
form space formulation of Mason and Weitz [10, 11, 12]. We now compare the two
approaches on data generated by the GLE with the 4-mode Rouse kernel above. To
make a fair comparison, we simulate an experiment which gathers many bead paths.

In Mason and Weitz’s original contribution [12], the memory kernel is trans-
formed to frequency space following the standard definitions and notations of linear
viscoelasticity [5]:

G∗(ω) ≡ iω

∫ ∞

0

G(s)e−iωsds = G
′
+ iG

′′
, (3.21)

If we now assume the 4-mode Rouse kernel, the corresponding real and imaginary
parts of G∗ are:

G′(ω) =
4∑

i=1

G0ω
2λ2

i

1 + ω2λ2
i

, G′′(ω) =
4∑

i=1

G0ωλi

1 + ω2λ2
i

, (3.22)

where G0 and λi are defined in (3.19).

Fig. 3.14. The real (G′(ω)) and imaginary (G′′(ω)) parts of the transform of the GLE memory
kernel, recovered from the same numerical GLE data with a 4-mode Rouse kernel, by the Maximum
Likelihood (ML) method and the Mason-Weitz method. The ML results correspond to a best 4-mode
exponential kernel fit.
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The “experimental data” consists of 200 paths of 1µm diameter tracer beads,
generated from the GLE algorithm described earlier. First we implement the Mason-
Weitz (MW) method. We calculate the MSD from these 200 paths, shown in Figure
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3.6. Next, the MSD versus t is transformed to the frequency domain, together with
the GSER, to arrive at G∗ (see [10] for details). We note the MW method is only
applied over the monotone part of the MSD curve in Figure 3.6, which optimizes the
accuracy of the MW reconstruction of G∗(ω). The results are graphed in Figure 3.14.
Second, we apply the Maximum Likelihood (ML) method to gain the best 4-mode
fit to the path data. G∗ is then given by (3.22) with the ML estimators, graphed in
Figure 3.14. The MW method overestimates G′ and G′′ in this frequency range.

If we further wanted to invert G∗(ω) to recover G(t), clearly the ML method
requires no work. From the MW estimate G∗(ω), we refer to [14, 20] for numerical
strategies to estimate G(t), including an exponential fit.

We comment that this comparison is made on data for which our methods are
designed to do well. The real test, on experimental data, remains for future compar-
isons.

4. Conclusions. A time-domain statistical strategy has been developed for pas-
sive microbead rheology which serves two purposes: as an inversion toolkit for recovery
of the diffusive transport modulus in a generalized Langevin equation from experi-
mental time series; and, as a direct simulation toolkit for pathogen diffusion of single
particles and statistical correlations if the diffusive transport modulus is known. These
direct and inverse algorithms combine to a general package for anomalous diffusive
transport of pathogens in soft matter, which we anticipate to be complementary to
the Mason-Weitz experimental and theoretical protocol [10, 11, 12]. These tools are
presently being applied to characterization of pulmonary liquids with our colleagues
Superfine, Hill, and Cribb in the Virtual Lung Project at UNC.

We mention another related approach based on fractional Brownian diffusion de-
veloped by Kou, Xie et al. [9, 13]. The approach taken in that work is to formulate the
generalized Langevin equation using fractional Brownian white noise as the stochastic
driving force. A benefit of this formulation is that number of parameters is limited;
the modeling feature that is distinct from our methods is that the autocovariance
function decays as a specific power law uniformly in time. If MSD experimental
data reflects a uniform power law scaling over the experimental time series, then the
fractional Brownian diffusion model should be strongly considered. The method of
fitting relies on estimating the autocovariance function for velocity and then fitting
the parameterized autocovariance to this estimated function. Standard errors may
then be obtained via simulation. The drawbacks include stochastic approximation
in the simulation methods and the difficulty in estimating the autocovariance of the
velocity when only position is observed. Our method overcomes these difficulties, but
is limited to models consistent with autocovariance functions which for long lags have
an exponential decay. Our formulation also allows for a greatly simplified simulation
method and a maximum likelihood parameter estimation procedure which may use
experimental data more efficiently.

An open question relates to the range of power law behavior that is possible
for GLE models with the class of M -mode exponential kernels considered in this
paper. So far, we have reproduced the classical Rouse and Zimm MSD scalings on
intermediate timescales between the shortest and longest relaxation times for kernels
with the Rouse and Zimm relaxation spectra. However, there are limited theoretical
results for general exponential series kernels. Our preliminary numerical studies show
a wide range of power law behavior is possible as the relaxation spectrum and the
respective weights for each mode are varied.

These tools are viewed as a foundation for further extensions of the single-bead
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and two-bead models and experiments. The ability to separate local bead-fluid inter-
actions from the bulk viscoelastic modulus, and to identify heterogeneity from single
particle and two-particle statistical correlations, are key future applications of these
tools.
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Appendix A. The Kalman Filter. Similar discussions to the following, based
on [19], may be found in numerous texts ([8],[2]). The framework of the Kalman filter
is to take a linear system model and an observation model which depends linearly on
the state of the system. We call this general setup a linear state space model and use
the following notation: The system equation is

Yn = BYn−1 + εn (A.1)

where εn ∼ N(0, S), and the observation equation is

Un = CYn + ξn (A.2)

where ξn ∼ N(0, D). Also, note that εn and ξn are independent sequences and
independent of each other. (Here we have included an error term for Un which is the
case in the standard Kalman filter. In the present paper, we assume no observation
error and so the D matrix will be zero.)

The goal of the Kalman filter is to calculate the conditional distribution of Yn

given the observations U1, ..., Un. The mean of this conditional distribution is an
estimate (which is optimal in certain ways) of Yn. We are estimating the “hidden”
elements of the process by conditioning on the observed elements of this process. For
this procedure to be computationally feasible, a recursive algorithm is necessary. In
other words, we would like to calculate the new conditional distribution of Yn given
U1, ..., Un using only the conditional distribution of Yn−1 given U1, ..., Un−1 and a new
observation Un.

As a preliminary, the calculations of the Kalman filter rely on a basic theorem
from multivariate statistical analysis which allows us to calculate the distribution of a
portion of a Gaussian random vector conditioned on the other portion. For a normal
random vector, A,

A =
(

A1

A2

)
∼ N

[(
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

)]
, (A.3)

we have that the distribution of A1 given that A2 = a is

N [µ1 + σ12Σ−1
22 (a− µ2),Σ11 − Σ12Σ−1

22 Σ21]. (A.4)

This also works in reverse–if A2 ∼ N [µ2,Σ22] and the distribution of A1 is given in
A.4, then the joint distribution is given by A.3. (We are using the notation N [µ,Σ]
for multivariate normal distribution with mean vector µ and covariance matrix Σ.)
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As mentioned, we would like to find a set of recursive equations such that if we
had the new observation Un and the distribution of Yn−1|U1, ..., Un−1 (which we write
as Yn−1|n−1–we will use this notation throughout), then we can find the distribution
Yn|n. This distribution is the Kalman filter at time n. So, let’s assume that we have
the conditional distribution of Yn−1|n−1 where we call the conditional mean of this
random vector Ŷn−1 and the conditional covariance Pn−1. Now, using A.1 we can
calculate the distribution for Yn|n−1 which will be

Yn|n−1 = N [BŶn−1, BPn−1B
t + S] (A.5)

For simplicity, we use the notation Rn−1 = BPn−1B
t + S for the covariance matrix.

Combining (A.2) and (A.5) yields(
Un|n−1

Yn|n−1

)
∼ N

[(
CBŶn−1

BŶn−1

)
,

(
D + CRn−1C

t CRn−1

Rn−1C
t Rn−1

)]
, (A.6)

Right now, we need only to condition Yn|n−1 = Yn|(U1, . . . , Un−1) on Un|n−1 =
Un|(U1, . . . , Un−1) to give us Yn|n = Yn|(U1, . . . , Un) which is what we want. Another
application of the theorem gives us that the mean of Yn|n is

Ŷn = BŶn + Rn−1C
t(D + CRn−1C

t)−1(Un − CBŶn−1), (A.7)

and the covariance is

Pn = Rn−1 −Rn−1C
t(D + CRn−1C

t)−1CRn−1. (A.8)

So, we have derived the necessary recursions to take a new observation at time n
and the filter at time n− 1 (i.e. the distribution of Yn−1 given the observations up to
time n− 1) and obtain the value of the filter at time n.

For our application, one element is particularly important–the one step prediction
for the observation process which is the distribution of Un given U1, ..., Un−1, i.e.
Un|n−1. This is given, however, in the first entry of the combined vector on the LHS
of A.6. Explicitly,

Un|n−1 ∼ N [CBŶn−1, D + CRn−1C
t] (A.9)

This calculation is used in the error-prediction decomposition approach to calculating
the likelihood function.

Appendix B. Asymptotic Normality of Maximum Likelihood estima-
tors. A key benefit of the maximum likelihood method is the ability to calculate
standard errors on the estimates. In general, one starts with a model that depends
on the parameters Θ, and then maximizes the likelihood function with respect to
the model parameters to obtain the best estimate Θ̂ for the parameters. Under cer-
tain conditions,

√
N(Θ̂−Θ) converges to a multivariate normal with mean zero and

covariance matrix I−1(Θ) where I(Θ) is the information matrix [8] given as

I(Θ) = −E∇2 log L(Θ) (B.1)

The necessary conditions that need to be satisfied are:
1. I−1(Θ) must be positive definite.
2. Θ̂ must be in the interior of the parameter space.
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3. log L(Θ) has third order continuous derivatives in the neighborhood of the
true parameter values Θ.

4. Θ is identifiable. In other words, for each set of data L(Θ) is a one-to-one
function of Θ.

We approximate I−1(Θ) by finding the Hessian of the logarithm likelihood function
numerically with respect to the parameters evaluated at the maximum.

Appendix C. Evaluation of Autocovariance. We discuss how the covariance
matrix S for a GLE with M -mode kernel in Eq. (2.17), while (2M +2)×(2M +2)
coefficient matrices A and K defined as in Eq. (3.15), can be numerically calculated
accurately and efficiently. The only difficulty is in finding all 2M + 2 eigenvalues of
A; the remaining steps are straightforward.

C.1. Calculation of eigenvalues. For simplicity, we introduce parameters

ci =
6πaGi

m
=

6πaηi

mλi
, σi =

√
kBT

m
, κi =

√
2ci

λi
. (C.1)

Clearly, M eigenvalues, {−1/λi}M
i=1, are easy to get. The remaining 2M + 2 are

determined by the roots of the polynomial equation

Pd(x) = x
(
x

M∏
i=1

(x +
1
λi

) +
M∑
i=1

ci

M∏
j 6=i

(x +
1
λj

)
)

= 0. (C.2)

First we factor out the simple zero eigenvalue associated with the position equation
and then consider the remaining M + 1 eigenvalues by studying the roots of the
polynomial equation

P (x) = x

M∏
i=1

(x +
1
λi

) +
M∑
i=1

ci

M∏
j 6=i

(x +
1
λj

) = 0. (C.3)

If we rewrite the above polynomial (C.3) by dividing it with
∏M

i=1(x + 1/λi), we
have a new function

Q(x) = x +
M∑
i=1

ci

x + 1/λi
, (C.4)

which has the same roots as P (x). Recall 0 < λ1 · · · < λM . Clearly Q(x) changes sign,
and therefore has one zero, in each interval (−1/λi,−1/λi+1). These are easily found
by iteration. This yields M − 1 eigenvalues, denoted {xi}M−1

i=1 , and only 2 remain.
The polynomial P (x) of Eq. (C.3) has the form

P (x) = (x2 + bx + d)
M−1∏
i=1

(x− xi) = 0, (C.5)

where d and b are given explicitly from {−1/λi}M
i=1, {xi}M−1

i=1 :

d =
P (0)∏M−1

i=1 (−xi)
=

∑M
i=1 ci

∏M
j 6=i

1
λj∏M−1

i=1 (−xi)
=

∑M
i=1 ci

∏M
j 6=i

1
λj∏M−1

i=1 |xi|
> 0,

b =

∏M
i=1(1 + 1

λi
)∏M−1

i=1 (1− xi)
+

∑M
i=1 ci

∏M
j 6=i(1 + 1

λj
)∏M−1

i=1 (1− xi)
− 1− d > 0.

(C.6)
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This completes the calculation of all 2M+1 eigenvalues, and we note the last two roots
have negative real part due to b > 0. If the last two roots are complex conjugates,
then the matrix A is only diagonalizable in the complex space.

Similarly, for the matrix As in Eq. (2.17), where s is a scalar, all the eigenvalues
scale explicitly with s and the eigenvectors remain the same.

For M = 1, 2, 3, there are analytical formulas for the roots of the polynomial. In
the single mode case, M = 1, the eigenvalues are

ω1 =− 1
λ

, ω2 =−1
2
(1/λ +

√
1
λ2
− 4c1), ω3 =−1

2
(1/λ−

√
1
λ2
− 4c1), ω4 = 0 (C.7)

with easily calculated eigenvectors. The covariance matrix S (2.17) can thus be cal-
culated in closed form.

For general M , from Eq.(C.5) and Eq. (C.6), fast and efficient numerical schemes
could be found for the calculation of eigenvalues and eigenvectors.

C.2. Calculation of the covariance matrix S. Given this detailed spectral
information for A, we can pre-compute the covariance matrix, as shown below.

First we assume the matrix A has full span of eigenvectors R (its inverse is R−1),

A = RΛR−1, A2 = AA = RΛR−1RΛR−1 = RΛ2R−1 (C.8)

where Λ is a diagonal matrix whose diagonal components are the eigenvalues of A.
By definition,

eA =
∞∑

n=0

An

n!
=

∞∑
n=0

RΛnR−1

n!
= R(

∞∑
n=0

Λn

n!
)R−1 = ReΛR−1, (C.9)

where eΛ = eΛT

is diagonal and the covariance matrix S can be written as

S =R
(∫ ∆

0

eΛ(4−s)R−1KKT (R−1)T eΛT (4−s)ds
)
RT

4−s=u⇐⇒ S =R
(∫ ∆

0

eΛuCeΛudu
)

RT ,

(C.10)

where we define C = (R−1K)(R−1K)T .
Next, we take advantage of the above properties of the matrix A, as follows.

Denoting by eωiu the ith diagonal component of the matrix eΛu, where wi is the ith
eigenvalue of the matrix A, and Cij the ith row and jth column component of the
matrix C, we see (here (•ij)M×M denote an M by M matrix with ith row, and jth
column component •ij)

eΛuCeΛu =(Cije
wiu)(2M+2)×(2M+2)e

Λu

=(Cije
(wi+wj)u)(2M+2)×(2M+2).

(C.11)

So the covariance matrix admits

S = R
(
Cij

∫ ∆

0

e(ωi+ωj)udu
)
RT

= R
(
Cij

e(ωi+ωj)∆ − 1
ωi + ωj

)
RT ,

(C.12)
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and after all the eigenvalues ωi of A are determined, the integral form of S can be
pre-calculated according to the above result and the integration of the matrix function
can be avoided.
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