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Abstract
We present a system for visualizing magnetic resonance spectroscopy (MRS) data sets. Using
MRS, radiologists generate multiple 3D scalar fields of metabolite concentrations within the brain
and compare them to anatomical magnetic resonance imaging. By understanding the relationship
between metabolic makeup and anatomical structure, radiologists hope to better diagnose and treat
tumors and lesions. Our system consists of three linked visualizations: a spatial glyph-based
technique we call Scaled Data-Driven Spheres, a parallel coordinates visualization augmented to
incorporate uncertainty in the data, and a slice plane for accurate data value extraction. The
parallel coordinates visualization uses specialized brush interactions designed to help users
identify nontrivial linear relationships between scalar fields. We describe two novel contributions
to parallel coordinates visualizations: linear function brushing and new axis construction. Users
have discovered significant relationships among metabolites and anatomy by linking interactions
between the three visualizations.
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1. Introduction
We present a system for visualizing magnetic resonance spectroscopy (MRS) data in the
brain. Radiologists use the concentrations of multiple metabolites and their interrelationships
to understand brain physiology. This understanding is important for identifying
abnormalities such as tumors that are not always clear using anatomical magnetic resonance
imaging (MRI). For example, tumors can extend beyond the boundaries visible using
traditional MRI techniques. Also, radiation necrosis (dead tissue resulting from radiation
treatment) is difficult to distinguish from recurring tumors after surgery. MRS reveals the
chemical composition of tissue, which enables radiologists to more easily distinguish
between malignant and benign tissue.

Our collaborators have two primary visualization goals:

1. Relationship Exploration: Radiologists use both absolute metabolite
concentrations and relationships among metabolites as indicators of disease
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processes. Our colleagues seek to confirm known indicators and identify new
metabolite relationships for use in diagnosis and treatment.

2. Surgical Planning: Once radiologists identify a tumor, clinicians and surgeons
need to extract data values at precise locations to accurately plan procedures. This
goal requires viewers to have positional awareness within the data space and direct
access to raw data values.

The MRS data is composed of spatially registered anatomical brain MRI and spectroscopy
images. Anatomical MRI resolves different tissues such as gray matter and white matter as
different scalar intensities. Voxels in anatomical MRI are ∼ 1mm3 in volume. To generate
spectroscopy data, a statistical analysis tool identifies peaks in metabolic spectra with a
measured degree of uncertainty. Each voxel has over 20 metabolite concentrations
represented by a normal distribution with mean and standard deviation. Spectra are captured
at ∼ 1cm3 resolution. The coarse resolution allows us to use spatial visualization techniques
that may be confusing for higher resolution data.

Our visualization system has three components. First, we show users a 3D spatial
visualization called Scaled Data-Driven Spheres (SDDS). Using SDDS, a sphere scaled by
concentration and colored uniquely for each metabolite represents each data sample. We
randomly offset the spheres from their sample position and scale them such that spheres
from all variables are distinguishable. An interactive anatomical slice plane gives context to
the spatial visualization. This visualization helps our colleagues get a global sense of spatial
relationships among metabolites and anatomical structure.

The second visualization is a parallel coordinates (PC) visualization designed to help
radiologists confirm and explore hypotheses generated via the SDDS visualization. A PC
plot is an abstract data representation that plots data samples (for MRS, voxels) as lines
traveling through multiple parallel variable axes. PC is most useful for identifying patterns,
such as clusters of values or relationships. We have augmented traditional PC to convey data
uncertainty by representing curves directly as Gaussian distributions and implemented two
novel interaction techniques:

• Linear Function Brushing: Custom brush interactions identify linear relationships
between pairs of variables.

• New Axis Construction: User-identified relationships can be mapped into new PC
axes, which can serve as the basis for more complex relationship discovery.

The strengths of the SDDS and PC visualizations complement each other. The density of
information in an SDDS visualization can result in clutter and occlusion problems, but the
PC visualization compensates by discarding spatial information. When a viewer finds
patterns in the PC visualization, they can refer to the SDDS visualization to understand the
positions of interesting voxels and their relation to anatomy. We link interactions in both
visualizations so that data points selected in one visualization are reflected in another.

The third visualization component satisfies the surgical planning visualization goal. Once
users have identified a meaningful relationship or set of voxels, our colleagues need an
interface for precisely extracting MRS data values in anatomical context. An interactive
pseudocolored slice plane with isovalue contours shows values of a particular metabolite
overlaid on a grayscale coloring of anatomy. While simple, this visualization is a critical last
step before information discovered in the exploratory visualizations can be used in practice.
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2. MRI and MR Spectroscopy
Our radiologist colleagues generate the MRS data set using a technique based on traditional
MRI, which was derived from Nuclear Magnetic Resonance (NMR) spectroscopy. NMR
was developed to probe the structure of molecules. Lauterbur and Mansfield extended these
principles to provide spatially resolved information, thus creating the field of MRI.1 MRI
utilizes the signal from protons within tissues of interest to produce an anatomical scalar 3D
data set. The anatomical images shown in this work were generated via T1 (or spin-lattice)
relaxation imaging. T1 represents an interaction between a proton and local tissue as
characterized during the recovery of a disturbed magnetic field to equilibrium. Similarly,
MRS uses principles of NMR spectroscopy to probe the underlying metabolic spectrum of
tissue.2

The raw spectroscopy data consists of per-voxel metabolite spectra in which the heights of
different spectral peaks correspond to different metabolite concentrations. Each spectrum is
normalized on a per-voxel basis, which means that extensive expertise is necessary to
properly understand peak correspondence and metabolite interactions between voxels. An
offline processing system called LC Model computes absolute metabolite concentration data
sets based on the normalized samples.3 For each resolvable metabolite peak, LC Model
generates a scalar volume data set. Each absolute voxel concentration measurement is made
via comparison to pure metabolite basis sets, so LC Model also computes an appropriate
standard deviation with respect to established normal values. Depending on the imaging
sequence, LC Model generates at least 20 different metabolite concentration scalar volumes.
The data sets commonly associated with brain spectra, including choline, creatine, inositol,
glutamine, and N-acetylaspartate, are selected for further processing and visualization.

The current state of the art in medicine for handling MRS does not display multiple
metabolite concentration fields at once. Our radiologist colleagues overlay metabolite
spectra over each voxel of a slice through the anatomical data, as shown in Figure 1.
Maudsley et al. use a spectrum pseudocoloring to encode a single metabolite's concentration
on top of a gray scale anatomical image.4 Chang et al. use the computed ratio of choline to
creatine to diagnose gliomas, a particular type of brain tumor;5 they superimpose a grayscale
pseudocolored computed field over a grayscale anatomical slice plane. Our radiologist
colleagues require a technique for displaying multiple metabolite fields at once while
supporting relationship identification rather than displaying a single metabolite relationship.
Radiologists capture both brain MRI and MRS images using a Siemens Allegra 1.5T MRI
scanner. Each acquisition session lasts approximately six minutes. The metabolite spectra
are sampled at a voxel size of ∼ 1cm3, with resolution on the order of 20×20×10. Because
both anatomical MRI and MRS data sets are captured simultaneously for a single patient, no
additional registration is necessary.

3. Related Work
SDDS is a 3D multivariate scalar visualization technique that uses sparse 3D glyphs to
represent data values. Research in visualizing such data has approached the problem via
alternative techniques such as direct volume rendering (DVR), computed correlation fields,
isosurfaces with glyphs, and sparse 3D glyphs. The PC visualization pulls from a long
history of work most recently started by Inselberg.6

3.1 Alternatives to Sparse 3D Glyphs
Direct Volume Rendering (DVR) displays a scalar field using one or more functions that
map data values to voxel properties such as opacity and color. DVR can extend to
multivariate data when users define multiple transfer functions and combine the resulting
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images using different color channels.7 However, the resulting color mixing is difficult to
interpret when more than two colors are combined.8 Multidimensional transfer functions
address this by creating a higher-dimensional transfer function of multiple variables.9 With
creative user interfaces, the process of finding the right transfer function is analogous to
user-guided identification of variable correlations.

There are many techniques that highlight potentially meaningful correlations in multivariate
data. Nattkemper reviewed several of these techniques as applied to biomedicine, some of
which we describe below.10 Broersen and van Liere apply principal component analysis
(PCA) to raw spectroscopy data to find images that represent the greatest variation in feature
space and spectrum space.11 They subsequently auto-generate opacity transfer functions
using the PCA eigenvectors for use with standard DVR. While often useful, greatest
variance is only one of many useful descriptors and is not the relationship of interest to our
radiologist colleagues.

Our collaborators require an exploratory tool to help them to form hypotheses about which
metabolite relationships matter. Crouzil et al. describe an interface that uses gradient
alignment of scalar fields to display strong correlations.12 Multifield graphs let users explore
the large space of possible correlations and use DVR to display correlations of interest.13

Woodring and Shen describe a system that lets users combine scalar fields using set
operations (e.g. AND, OR, XOR, etc.) to generate an expression tree.14 Our work
complements these by giving users a sense of the raw data values lost after relationship
computation. The SDDS visualization enables the radiologists to explore relationships
among 5-10 fields, whereas computed correlations show radiologists specific, complex
combinations of fields. We incorporate this ability by enabling users to construct new axes
in the PC visualization as they search for new relationships.

Surface representations are most useful in applications where object segmentation and shape
visualization are the goals. To extend surface-based techniques to multivariate data, the
simplest option is to create separate isosurfaces for each variable and render them
simultaneously. Because opaque surfaces occlude each other, some form of surface
transparency is necessary. However, Interrante et al. showed that the human visual system
does not interpret depth accurately behind transparent surfaces.15 Partially transparent
textures, often based on principal surface curvature directions, help address this issue.16

While such surface-based techniques can be useful for visualizing several variables at once,
they do not address the visualization goals for our application. Viewers cannot reliably
estimate data values using surface visualizations except in areas near the surface. Our
visualization goals require a technique that both preserves data value visibility and shows
variable relationships.

3.2 Sparse 3D Glyphs
In sparse glyph visualization techniques, variable values are represented via separate
properties of geometrical glyphs (shape, size, color, opacity, etc.). The glyphs must be large
enough that variable channels are distinguishable. Kindlmann et al. describe superquadrics
and other shapes for glyph-based tensor visualization.17 They vary the shape and orientation
of glyphs to indicate the magnitude and direction of flow at glyph locations.

Ebert et al. studied glyph usage for multi-dimensional data visualization, primarily by
discussing the different ways of varying shape to convey different scalar values.18 They
propose varying color, size, shape, and opacity along separate scalar components. Such an
encoding is problematic for the MRS data set because using different encodings for
semantically similar metabolite fields makes relative magnitude estimation difficult. Some
variables will be harder to interpret than others. Also, varying shape for one variable and
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varying size for another does not convey the impression that all scalar fields have the same
modality. To address these issues, we use only color to differentiate metabolite volumes.

This paper presents a 3D glyph technique that extends Bokinsky's Data-Driven Spots into
3D.19 Bokinsky displays multiple scalar fields using color-encoded Gaussian splats placed
on a jittered sample grid. She shows that multiple layers of differently-colored spots were as
effective for the display of the shape of overlapping 2D scalar fields as direct display of the
computed intersection. BrainExplorer, developed by Lau et al., uses a similar sphere-based
glyph technique to visualize gene expression in mouse brains.20 This technique was
developed concurrently to ours and maps glyph size to expression level and glyph color to
anatomical annotation, gene type, or gene expression level redundantly. SDDS is similar to
BrainExplorer when glyph size is mapped to expression level and glyph color separates
different genes.

3.3 Parallel Coordinates and Scatter Plots
PC visualizations are most commonly used to search for patterns in non-spatial data. In its
basic form, PC displays one 2D axis for each variable and represents samples as lines
passing through those axes. To visualize uncertainty in this data, the most common
technique is to use color.21 However, this interferes with color's other common use in PC:
line classification. Instead of color, Fua et al. draw lines with linear opacity falloff to
represent variance in computed clusters.22 We use a similar visualization of per-variable
voxel variance, however we directly represent the normal distribution with an appropriately
scaled Gaussian falloff that we interpolate between axes.

We use curved lines rather than straight lines to represent voxels. Curves are generally
computed by enforcing either smooth derivative constraints at variable axes23 or zero-
derivative constraints at variable axes.24 While the former lets viewers more easily
distinguish lines incident on nearby points on an axis, it reduces cluster visibility and distorts
line intersections between axes. Such intersections indicate linear relationships between
variables,25 an important feature we use in our visualization system. We therefore opt for
zero-derivative constraints, which preserve the existence of intersections.

Scatter plots are a commonly used bivariate data visualization tool that display data samples
as glyphs drawn on a Cartesian grid. Values of more than two variables are commonly
conveyed by creating a matrix of scatter plots.26,27 While such plots can display many of the
same data relationships among pairs of variables, the parallel coordinates plot more directly
shows relationships and population clusters among all variables by connecting the values on
each variable axis.

3.4 Linked Visualization Systems
Many systems coordinate combinations of both abstract and spatial visualization techniques.
XmdvTool28 and GGobi29 combine several abstract visualizations (PC, scatterplots,
hierarchical views, etc.) of multivariate data sets. Akiba and Ma link interactions between
PC, time histograms, and DVR.30 Users can brush over interesting clusters of lines in the PC
view or features in the histogram view and see the DVR update interactively. Systems like
SimVis31 and WEAVE32 combine information visualization techniques (statistical
representations, feature analysis, ND projections) with scientific visualizations. Our work
uses a similar linked visualization approach to help radiologists understand relationships and
values in MRS data.
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4. Implemented Visualization System
The system we present to the radiologists has three components: a spatial SDDS
visualization, a PC visualization that incorporates data variance, and a value extraction
interface that uses a color-mapped anatomical slice plane.

4.1 Scaled Data-Driven Spheres
The SDDS technique distributes a separate set of spherical glyphs into 3D space for each
metabolite. Bokinsky's 2D Data-Driven Spots map scalar value to glyph opacity.19 As
shown by Interrante et al., glyphs with varying opacities are extremely difficult to
understand in depth.15 In order to extend this technique into 3D, we therefore map data
value to glyph radius instead, which has the added benefit that small glyphs in low-valued
regions do not occlude high-valued regions. We use sphere glyphs because they are easy to
interpret at any scale, even when small. Spheres placed along a regular grid exhibit strong
aliasing and stacking effects, so we resample the scalar field on a randomly jittered version
of the original sample grid, as shown in Figure 2. The glyphs for each scalar volume use
separate jittered grid positions. We compute sphere radius as follows:

(1)

(2)

where rmax is maximum glyph radius, r is the glyph radius for a particular data value v in the
range [vmin,vmax], s is the sample spacing, n is the number of scalar volumes visible and k is
a user-adjustable parameter. When k = 1, the glyphs for all scalar volumes at a single sample
point can fit within a voxel without overlapping. When sphere glyphs get too large, the
viewer tends to lose a sense of the continuity in the data signal between voxels. For low
resolution data sets such as MRS, Interpolating between data values with smaller glyphs
solves the problem.

When displaying multiple scalar fields, we color each field of glyphs uniquely. Humans can
quickly name and differentiate approximately 12 color values,33,34 so this number serves as
the theoretical upper limit of the number of simultaneously displayable scalar fields.
Bokinsky found that viewers had no trouble visually separating nine fields of scaled and
colored spots in a 2D Data-Driven Spots visualization. The inevitable increase in visual
occlusion resulting from adding a new field limits the number of displayable scalar fields.
Depending on the desired glyph size, sample density, and data sparsity, we have observed
that images with more than five to six scalar fields become over-occluded and hard to
interpret.

We combine SDDS with a 2D anatomical slice plane so that radiologists can correlate
anatomical structure to metabolite values and relationships. Users have standard control over
window and level values. We did not include a 3D visualization of the anatomy because
SDDS produces a visually dense image; an additional 3D anatomy visualization would
severely obstruct the spheres. An added benefit of the 2D slice plane is that it can be used as
a partial occluder; when viewers are only interested in values near a particular z-slice of
anatomy, the slice plane can be moved to occlude the color spheres beneath that slice.
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Both stereo display and an interactive camera help viewers disambiguate depth in the
renderings. As a result, they have a fuller understanding of the shape of the different scalar
fields. Figure 2 shows a cross-eyed stereo image pair of SDDS to show the strength of the
stereo effect. Note that even monovariate volume visualization of unfamiliar asymmetric
structures is a difficult problem that benefits from stereo 3D. Stereo becomes even more
important when viewing multivariate volume visualizations, regardless of the chosen
technique.

4.2 Parallel Coordinates
SDDS helps users identify spatial relationships among metabolites and anatomy. We link the
SDDS visualization to a PC visualization to help users more accurately quantify those
relationships and select voxels that match. The PC visualization is modified from traditional
PC in four ways. First, we use S-shaped cubic splines instead of straight lines. Second, we
represent value uncertainty as Gaussian falloff with interpolated standard deviation. Finally,
we incorporate two novel interaction techniques:

• Linear Function Brushing: Users can select curve patterns commonly visible in
PC.

• New Axis Construction: Users can create new axes based on discovered
relationships.

Perception research has shown that viewers can more easily follow curved lines than
connected line segments.33 This phenomenon is often explained via the Gestalt principle of
“common fate.” We therefore draw curved lines rather than straight segments as is
traditionally done in PC. Cubic splines with smooth first derivatives are easy to follow and
help viewers distinguish lines incident on the same position on an axis.23 However, line
clusters (both in slope and axis intersection) are easier to see when curves arrive
perpendicular to the axes.24 Such curves are S-shaped between axes. We opt for S-shaped
curves because clusters are more important than individual curve behavior in our
application.

4.2.1 Uncertainty—The MRS data for every metabolite in a voxel is represented by a
scalar concentration and a standard deviation. Techniques we attempted for augmenting
SDDS to incorporate uncertainty (such as opacity, with or without surface texture) result in
confusing and cluttered visualizations. PC gives us the opportunity to represent this
uncertainty. We extend the linear falloff technique used by Fua et al.22 by using a Gaussian
distribution that matches the voxel standard deviation. Because the standard deviation
changes at each axis, we use the same zero-derivative spline computation used for the curves
to interpolate standard deviation between axes. When the lines become extremely blurry, the
original data values are completely lost. Although this accurately portrays the uncertainty in
the data and is useful for showing general trends, it can interfere with the display of
relationships. We therefore emphasize the center of each blurred curve (the distribution
mean) by making it slightly brighter than the rest of the curve. Figure 4 shows the difference
between blurred curves with and without mean emphasis. This brightness is a user-
controlled parameter.

4.2.2 Linear Function Brushing—The patterns apparent with PC most often fall into
two categories: clusters of lines passing through a small range of values or clusters of lines
representing a linear relationship between two variables. For example, strong negative
correlation results in a characteristic hourglass shape in the PC visualization. Figure 5a
depicts some other patterns resulting from linear relationships. Our radiologist colleagues
wish to use MRS to distinguish benign tissue from malignant tissue. Ideally, multiple sets of
relationships would be visible in the PC plot. We therefore need interactions for selecting
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curves satisfying a particular relationship, such as the linear relationships described above.
We provide three mechanisms for selecting curves in the PC visualization: clustered curve
selection, slope-based selection, and linear function-based selection.

To select a clustered set of curves, the user brushes over a region. A curve is selected if that
region spans the majority of the integrated Gaussian. Once a curve has been selected, it is
drawn in a different color and a corresponding wireframe cube appears around the voxel in
the SDDS visualization. This lets users immediately understand the spatial context of their
selection. However, selecting a set of curves can be difficult when multiple noisy
relationships are present due to curve overlap. Angular brushing, described by Hauser et al.,
resolves this problem by selecting curves that have a range of slopes defined by the user.35

Lines with similar slope signify a particular linear relationship; linear function brushing
extends this to allow users to select the characteristic shapes of all linear relationships.

Users highlight more complex linear relationships by drawing two representative lines that
describe a perceived visual pattern. For example, a user can outline both sides of the
hourglass shape indicative of a negative correlation. We call this linear function brushing.
We evaluate how well one curve matches the function represented by these curves as
follows:

(3)

As shown in Figure 5a, a and b are the values of the curve being evaluated at two axes (A
and B). a0 and b0 are the values of the first representative lines. a1 and b1 are the values of
the second representative line. K is a threshold set by the user. The linear function described
by these lines follows:

(4)

(5)

(6)

We display the function described by the two representative lines for the user's reference.
Note that when the axes are rescaled to individual variable ranges, angular brushing selects
lines that indicate both a shift and a scale, similar to linear function brushing. While some
parallel coordinates research has advocated forcing all axes to the same data range to
preserve relationships, this can result in unusable columns for variables with very different
ranges. Linear function brushing enables users to use visual pattern matching to discover
relationships between individually scaled axes and informs them of the specific relationships
those patterns represent.
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4.2.3 New Axis Construction—Our radiologists find pair-wise relationships useful,
however more complex relationships between variables also exist. Therefore, once a user
has identified a meaningful combination of two variables, we let them create a new axis that
represents that relationship. The new axis appears as a new set of spheres in the SDDS
visualization. If the user finds this relationships using the brushing techniques described
above, our system presents to them that relationship and allows them to create a new axis in
one of two manners. The linear combination can be represented as either a difference (y −

mx − b) or a ratio . In the former case, curves that match the difference will be near
zero, as shown in Figure 5b; in the latter, matching curves will be near one. The ratio form
exacerbates differences for small values of x, so we additionally give users manual control
over axis data range.

4.2.4 Other Features—Axis ordering is a common problem in PC visualizations. If a
viewer sees two variables that may have an interesting relationship in SDDS, we let users
simply drag and drop axes to swap the positions of two variables. Also, if the user is
interested in only quantifying a linear relationship rather than selecting new voxels, we have
implemented a query mode that provides this functionality. There are four selection
operators that enable users to add to, subtract from, replace, and query the current selection
(without selecting curves).

5. Use Case: Tumor Segmentation
We now show a use case of our visualization system applied to a data set with a tumor
visible in the anatomical T1 slice plane. The tumor is visible in the slice plane because the
patient has taken an intravenous contrast agent. In this data set there are four metabolites:
choline (Cho), creatine (Cr), glutamine (Gln), and N-acetylaspartate (NAA). First, the user
views the SDDS visualization to get a global sense of the spatial relationships between
variables, as shown in Figures 6a and 2. In this image, several relationships are apparent. All
of the metabolites appear depressed inside of the tumor, except for a small voxel in orange
(Cr). The green (NAA) and orange (Cr) metabolites appear to be positively correlated
outside of the tumor. Also, green (NAA) and orange (Cr) appear to be negatively correlated
with yellow (Gln) outside of the tumor.

The user now seeks to confirm and quantify these hypotheses by looking at the PC
visualization, shown in Figure 6d. First, the user orders the axes such that some of their
hypotheses can be tested (Cho, Cr, Gln, NAA). This view shows a cluster of lines traveling
from Cho to Cr in a linear function pattern. Using the linear function brush, the user draws
two representative lines and selects voxels that match that pattern: Cho ≈ .9 Cr − .05, which
is a strong positive correlation as shown in Figure 6b. Following the lines to the other two
variables, it becomes clear that similar linear relationships exist in the other variables, and
strong negative correlation appears to exist for the selected voxels between Gln and NAA.
The user looks at the selected voxels in the 3D visualization and sees that this selection of
voxels seems to match tissue outside of the tumor, shown in Figure 6e.

Returning to the PC visualization, the user seeks to confirm the positive correlation
hypothesis between NAA and Cho and swaps NAA with Gln. Using query mode, the user
draws the function that matches the previously selected voxels between the Cr and NAA
columns and sees that they are indeed strongly correlated: Cr ≈ .4 NAA. The user now
confirms the negative correlation hypothesis between NAA and Gln outside the tumor by
applying a query brush a second time: NAA ≈ − .6 Gln + .2.
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The user sees another cluster of curves with similar negative slopes between Cho and Cr.
Choosing a second selection color, the user selects those curves with the angular brush,
shown in Figure 6c. Note that the axes have been individually rescaled such that Cr has
twice the range of Cho. Because of this, the negative slope selected actually represents a
positive scale in data space: Cho ≈ .4 Cr. Returning to the 3D visualization shown in Figure
6f the user can see that the newly selected voxels are inside of the tumor. The selection of
these two class of lines has indicated that the Cho/Cr ratio is smaller inside of the tumor than
outside.

Four major insights have come from use of the visualization system:

• Outside the tumor, Cho and Cr are positively correlated: Cho ≈ .9 Cr − .05.

• Outside the tumor, Cr and NAA are positively correlated: Cr ≈ .4 NAA.

• Outside the tumor, Gln and NAA are negatively correlated: NAA ≈ − .6 Gln + .2.

• Inside the tumor, Cho/Cr is significantly smaller than outside: Cho ≈ .4 Cr.

The user can now compute a new axis to produce a tumor segmenter. Noticing that Cho, Cr,
and NAA are all positively correlated to each other and negatively correlated with Gln
outside of the tumor, the user can combine the above observations into a single function that
will identify all such voxels:

(7)

The closer to zero the value of this function for a voxel, the more likely the voxel is to be
outside of the tumor. This new axis appears as a new set of spheres in the SDDS
visualization. The user can now use the 2D colored slice plane on the computed axis to
extract specific values.

6. Conclusions and Future Work
The SDDS visualization successfully enables our radiologist colleagues to understand
relationships between metabolites and anatomical features. While our visualization design
was guided solely by radiologists, SDDS has a wider range of applicability than MRS. The
SDDS visualization enables viewers to explore and analyze the relationships between the
variables in a multivariate volume scalar field. We have also applied these techniques to
multivariate chemical concentrations from the Virtual Cell project
(http://www.nrcam.uchc.edu/) and multi-fluorophore confocal optical microscopy data sets.
To our knowledge, SDDS is the only multivariate scalar volume visualization technique that
has the potential to scale to 11 simultaneous channels of display. Currently, sphere scale is
under user control, however future work on SDDS may include discovering what sphere
scale leads to the greatest understanding.

In addition to SDDS, we investigated several other multivariate scalar volume visualization
techniques. We presented isosurfaces, glyph-textured isosurfaces, and superquadric glyphs
to our clients in addition to SDDS. The radiologists decided that SDDS most accurately
enabled them to understand relationships among metabolite concentrations and anatomical
structure. Opaque isosurfaces occluded each other, but adding transparency or texture
produced images that were either too confusing or overly occluded. The surface-based
techniques were able to identify specific structures, but relationships and values through the
data volume were more difficult. Superquadric glyphs, a shape-based alternative glyph
technique, produced shape representations for which the range of distinguishable values was
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significantly different for different shape channels. Additionally, mapping semantically
related variables (different metabolites) to semantically different channels (shape, color,
scale, etc.) was confusing for our colleagues.

The PC visualization complements the SDDS visualization by discarding spatial
relationships and focusing instead on clusters of voxels with similar behavior. We show an
intuitive method for incorporating normally distributed uncertainty into PC visualizations.
We will continue to investigate how to incorporate uncertainty into other information
visualization techniques, such as scatter plots.

The brushing techniques we describe help users isolate specific voxel relationships via
visual pattern matching without requiring the viewer to compute the relationships on their
own. It is particularly useful for helping viewers identify patterns between axes that have
individually rescaled data ranges. Rescaling all axes to the same range comes at the cost of
sample resolution, and may not be possible for multi-modal data sets in which variables can
have dramatically different ranges, and even units. This will be important for comparing
MRS data to other imaging modalities. We will continue to investigate user-guided
relationship discovery techniques. For example, user-identified relationships may be useful
for seeding automatic clustering techniques that compute multivariate relationships for
segmentation.

Our novel brushing techniques applied to PC enabled radiologists to identify relationships in
MRS data. Gaussian curve representation provides a more accurate portrayal of trends and
patterns in the presence of uncertainty. By linking PC with SDDS, radiologists can confirm
hypotheses about relationships among metabolites and anatomy. As we improve both
visualization and interaction with our system, we hope to continue to help radiologists
diagnose patients with more confidence and accuracy.
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Figure 1.
Our radiologist colleagues currently visualize MRS data sets by overlaying metabolite
spectra on anatomical MRI slices. This visualization is difficult to understand, even with
special training.
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Figure 2.
A cross-eyed stereo pair of SDDS with four variables above a grayscale anatomical slice
plane. The outline in the anatomical image is a constrast stain highlighting a potential tumor.
Notice how all of the variables are low-valued within the tumor.
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Figure 3.
Examples of three curve representations in PC visualizations. Straight lines are the
traditional representation, but curves are easier to follow. Cubic splines help viewers track
curves entering a small range of values. S-Curves emphasize clusters at the expense of
tracking.
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Figure 4.
Two ways of representing uncertainty, with and without emphasis of the original data point
value. Center line emphasis (4b) highlights mean metabolite concentrations at the cost of
implying a more certain value. The degree of emphasis is a user-controlled parameter.
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Figure 5.
Left: diagram of variables used in the equations in Section 4.2.2 and example visual patterns
that emerge when linear relationships among variables. Using linear function brushing, the
user draws two representative curves to select all curves that match a particular linear
function. Right: once selected, a new column representing the selected function can be
constructed to compare that relationship to other variables.

Feng et al. Page 18

Vis Data Anal. Author manuscript; available in PMC 2011 January 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Use case images. Left: The user confirms hypotheses gathered from the SDDS visualization
by selecting visual curve patterns in the PC visualization. Center: The first pattern selects
voxels predominantly outside the tumor. Right: The second pattern selects voxels
predominantly inside the tumor.

Feng et al. Page 19

Vis Data Anal. Author manuscript; available in PMC 2011 January 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


